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ABSTRACT

 

Much has yet to be understood about the role of specific families of T 

lymphocytes in the post human hematopoietic stem cell (HSC) transplant environment. 

Prior work in the field has identified T cells based upon the expression of their T cell 

receptor beta variable regions (TCRBV). In this investigation we developed a 

comprehensive panel of oligonucleotides that can be used to determine the expression 

of all 91 alleles of the human TCRBV regions using real time PCR technology. 

Application of this technology to peripheral blood samples collected weekly from 

allogeneic peripheral blood stem cell transplant patients yielded the following findings: 

(1) specific TCRBV families are associated with the reactivation of cytomegalovirus 

(CMV) post HSC transplant with many of these same TCRBV families also being 

associated with the occurrence of GVHD, (2) the TCRBV repertoire engrafts in the 

recipient with a profile more similar to that found in the donor as opposed to that found 

in the recipient prior to transplant, and (3) the similar immunosuppressive agents, 

cyclosporin A (CSA) and tacrolimus (FK506), differentially alter the TCRBV repertoire 

with their administration, a difference which can not be attributed to a divergent 

inhibition of calcineurin or IL-2 production by CSA or FK506.
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I. The History of Hematopoietic Stem Cell Transplantation 
Many advancements in the field of hematopoietic stem cell transplantation were 

borne from the seemingly unrelated birth of nuclear technologies. With the development 

of atomic technologies and the potential of nuclear warfare, the effects of irradiation on 

biological systems became an area of imminent interest 1. This resulted in a series of 

experiments conducted over the past fifty years and has greatly increased our 

understanding of hematopoietic stem cell transplant and the immunological 

mechanisms that are so critical to its success.  

The modern epoch of bone marrow transplantation was pioneered by Lorenz in 

1951 when he demonstrated that mice could be protected against lethal irradiation by 

intravenous infusion of bone marrow 2. This discovery quickly brought about the notion 

that hematological malignancies could potentially be cured through irradiation and 

subsequent marrow grafting. Barnes, et al., showed that murine leukemia could be 

successfully treated using sub-lethal doses of irradiation followed by the infusion of 

healthy marrow 3. The following year, the first reports detailing similar clinical trials in 

humans were made, describing the immediate rescuing from radiation-induced 

pancytopenia in cancer patients by marrow infusion 4,5. In 1959, Mathe et al., attempted 

bone marrow transplantation in humans on a larger scale when they tried to rescue six 

victims of a radiation accident in Vinca, Yugoslavia, by transplanting allogeneic bone 

marrow 6. This group continued trying to use bone marrow transplantation as treatment 

for hematologic malignant conditions, however, it was not until 1963 that they reported 

the first case of a patient surviving beyond a year. While this patient remained leukemia-

free, severe graft-versus-host disease (GVHD) reactions were documented, the first of 

such, and the patient succumbed to infection 20 months post-transplant 7. 
 

II. Types of  Hematopoietic Stem Cell Transplantation 
There are three primary types of hematopoietic stem cell transplants depending 

upon the stem cell source and the identity of the donor. These are termed autologous, 

allogeneic, and syngeneic transplants. The first type, autologous transplant, describes 

the process where an individual serves as his/her own stem cell source. In order for an 

autologous stem cell transplant to be successful, the individual’s marrow must be 

virtually disease free prior to harvesting. An example of the use of this type of transplant 
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is one in which a patient must undergo intensive treatment directed at his/her tumor, 

which, as a consequence, would inadvertently cause destruction to his/her 

hematopoietic system. After the high-dose tumor therapy, the patient can then be 

infused with the previously collected stem cells to rescue his/her hematopoietic system. 

Autologous transplants are now most frequently used for hematologic malignancies 

such as lymphomas. Advantages to autologous transplantations are that there is no 

need to locate a suitable stem cell donor as well as a decreased risk of treatment-

related mortality. Such transplants, however, have a risk of tumor cell contamination in 

the graft. Additionally, autologous transplants cannot be used in the treatment of 

inherited non-malignant hematopoietic diseases or acquired marrow failure states, such 

as aplastic anemia 8.   

The second major type of hematopoietic stem cell transplant, termed an 

allogeneic transplant, is one in which the stem cell donor is separate from the recipient. 

The donor must be genetically matched to the recipient but the two can either be related 

or unrelated. Advantages of this type of transplant are that there is a low risk of the graft 

being contaminated with malignant cells and it can successfully be used in treating both 

malignant and non-malignant diseases of the hematopoietic system. An additional 

advantage to allogeneic transplant is the possible destruction of residual recipient tumor 

cells by the infused donor-derived cells, an occurrence termed graft-versus-tumor effect. 

Despite these advantages, however, there is often great difficulty in finding an 

appropriate donor and there is a greater increase, compared to autologous transplants, 

of post-transplant complications, such as graft-versus-host disease 8. 

The third major type of hematopoietic stem cell transplant is one in which the 

donor and recipient are genetically identical, such as the case that occurs when the 

recipient and donor are identical twins, and is termed a syngeneic transplant. Post 

transplant complications tend to be diminished in this setting, compared to a non-

identical allogeneic transplant, but while the majority of patients may have a sibling, it is 

relatively uncommon for the sibling to be an identical twin 8.  

Traditionally, hematopoietic stem cells (HSC) have been harvested from bone 

marrow through extraction at the iliac crests. Recent advancements in transplantation 

technology, though, have permitted the mobilization of hematopoietic stem cells from 
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the bone marrow environment to the peripheral circulation through the use of growth 

factors such as granulocyte colony stimulating factor (G-CSF) 9-13. HSC comprise only a 

small fraction of the total number of cells in the bone marrow, with a rate of 

approximately one HSC/10,000 total bone marrow cells and the number of HSC 

circulating in the peripheral blood is an exceedingly rare event 14. After G-CSF 

administration, however, the frequency of HSC in the peripheral blood is increased two 

to five-fold greater than that found in the bone marrow 15. Mobilized HSC can then be 

harvested from the peripheral blood by a pheresis procedure. A dose of at least five 

million HSC/kg recipient weight has been reported to be the ideal dose to achieve 

engraftment 16.  

While multiple collections may be required in order to achieve the necessary 

number of stem cells for transplant using the G-CSF mobilization technique, there is a 

low toxicity profile associated with G-CSF administration in humans 10-13. The side 

effects are generally limited to bone pain and general influenza-like symptoms and there 

have been no documented reports of termination of G-CSF administration to healthy 

donors due to its side effects. Thrombocytopenia, or the reduction in platelet number, is 

frequently observed post-pheresis in G-CSF mobilized donors. This reduction, as well 

as any bone discomfort, is generally reversed within 48 hours of cessation of drug 

administration. On the other hand, while bone marrow harvests require no mobilization 

therapies and can often be done in a single one-day collection, the pain associated with 

bone marrow harvests may take 2 to 4 weeks to subside 17,18. In addition, various 

studies have reported a decreased time for reconstitution of the immune system, less 

transplant-related toxicities and mortalities, and a decreased rate of GVHD occurrence 

in peripheral blood stem cell recipients compared to bone marrow recipients 19-23.  

The benefits of peripheral blood stem cell harvesting, compared to bone marrow 

harvesting, have resulted in peripheral blood stem cell transplantation becoming much 

more frequently used compared to bone marrow transplantation. HSC have also been 

collected from umbilical cord blood and used successfully in allogeneic transplantation. 

While cord blood HSC have decreased alloreactive potential compared to their 

counterparts isolated from more mature donors, cord blood stem cells exhibit a delayed 
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reconstitution of the hematopoietic system, thereby limiting their usage in hematopoietic 

stem cell transplantation 24-30.   

In allogeneic transplants the conditioning regimen the recipient receives prior to 

transplant is highly dependent upon the type of disease the patient has as well as how 

aggressively it behaves 31. There are three main objectives to the treatment. The 

primary objective is to eradicate the underlying hematological disease in the recipient. 

The second objective is to suppress the recipient’s immune system to decrease the risk 

of the recipient rejecting the donor’s stem cells. The third objective in using a 

conditioning regimen pre-transplant is to create space in which the donor’s stem cells 

can engraft and growth can be accommodated 32. While the amount of time required for 

immune reconstitution post hematopoietic stem cell transplant varies depending upon 

parameters such as the type of transplant, conditioning regimens, and 

immunosuppressive therapies, CD8+ T cell counts tend to recover to normal values 

within the first month post transplant with a prolonged deficiency of CD4+ T cell counts 

often seen six to twelve months post transplant, leading to the characteristic inversion of 

the CD4:CD8 ratio observed post transplant 33-37.    
 

III. HLA 
Based on experiments initially performed in mice 38 antigenic principles 

underlying cellular transplantation began to be established. Such experiments led to the 

recognition of what became termed the H2 transplantation antigen system 39 in mice 

and the HLA system in humans 40. The human leukocyte antigen (HLA), also termed the 

major histocompatibility complex (MHC) forms a complex which is expressed on the 

cellular surface. The principle function of this molecule is to present peptides (from 

either self or non-self origin) to T lymphocytes, a vital component to the immune system. 

By doing so, the T lymphocytes are able to distinguish self versus non-self. An 

illustration of this principle is afforded by examining what occurs during a viral infection: 

if a cell is infected with a virus, pieces of viral proteins (non-self) are loaded into the 

MHC molecule and presented on the surface of the infected cell. The interaction of a 

circulating T cell with this (non-self) MHC molecule can activate the T cell, causing it to 

destroy the infected cell, thereby limiting the spread of infection. The same is true in the 

setting of transplantation. T cells in the donor graft can recognize cells within the 
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recipient’s body as non-self, eliciting devastating immune reactions. This is the premise 

of a serious post-transplant complication called graft-versus-host disease (GVHD) 41.  

There are three classes of HLA (or MHC) genes, termed class I, class II, and 

class III genes, with all three being located on chromosome 6 in humans. The names 

HLA-A, HLA-B, and HLA-C are given to the human MHC class I genes while the MHC 

class II genes are identified as HLA-DR, HLA-DP, and HLA-DQ. The products of these 

MHC class I genes are expressed on the surface of nearly all cells within the human 

body while the expression of the MHC class II genes is restricted to antigen presenting 

cells and thymic epithelium. Classically, MHC class I proteins present endogenous 

antigen (or peptide) to CD8+ T cells while the MHC class II proteins present exogenous 

antigen (or peptide) to CD4+ T cells. The final class of genes, those located within the 

MHC class III region, encode various immunologically relevant proteins such as 

complement and the tumor necrosis factor cytokines 42.  

Figure 1: Gene structure of the human major histocompatibiltiy complex (MHC) 

 
 

The HLA genes are expressed in a co-dominant fashion and are highly 

polymorphic 43. In terms of their importance in hematopoietic stem cell transplantation, 

matching at the MHC class I HLA-A and HLA-B loci was given priority as previously 

there had been a lack of reagents available to accurately determine the HLA-C 
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genotype. Due to the advancements of molecular biology, however, such discrimination 

is now possible. In fact, recent reports have been made concerning the importance of 

HLA-C matching in hematopoietic stem cell transplantation 44-46. As it relates to the 

MHC class II molecules, allelic mismatching of the donor and recipient at the HLA-DR 

loci was the first to be shown to be associated with an increase in graft-versus-host 

disease reaction 47. The importance of HLA-DQ matching is also becoming more 

apparent 48. However, like its MHC class I counterpart (HLA-C), mismatching at the 

HLA-DQ locus has yet to become a basis for donor exclusion. The role of HLA-DP in 

transplantation has remained rather controversial and is also not typically evaluated 

when searching for an appropriate donor 49. In summary, the common practice of HLA 

matching in related donor and recipient has remained matching of the HLA-A, HLA-B, 

and HLA-DR loci, although typing of additional loci is commonly performed when an 

unrelated donor is being considered. Likewise, HLA matching is typically performed 

using serological methods when the donor is related and by molecular analyses when 

the donor and the recipient are not related.  
 

IV. T Cells 
On the converse side of the MHC molecule is the T cell, whose interaction with 

the MHC molecule is mediated 

through the T cell receptor 

(TCR). T lymphocytes originate 

in the bone marrow from a 

lymphoid progenitor cell and 

migrate to the thymus as 

immature cells. The thymus 

provides a unique 

microenvironment in which the 

T lymphocyte rearranges its 

receptor genes (chromosome 

14, TCR alpha genes and 

chromosome 7, TCR beta 
Figure 2: T cell receptor (TCR) gene rearrangement 
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genes 50) and matures. T cell receptor (TCR) gene rearrangement occurs in the sub 

capsular region of the thymus with rearrangement of the heavy chain (or beta chain) 

genes occurring prior to rearrangement of the light chain (or alpha chain) genes. Within 

the T cell receptor beta chain locus, a diversity (D) segment is randomly paired with a 

joining (J) segment. This DJ unit is then rearranged with a variable (V) segment to form 

a VDJ segment. The constant (C) region exon is then spliced to the VDJ segment to 

generate the message, which is translated into the T cell receptor beta chain protein. 

Beta chain gene rearrangement is followed by rearrangement of the TCR alpha chain, 

which occurs in the same manner as for the heavy chain. However, as there is no 

diversity region in the light chain, rearrangement of the variable and joining segments is 

followed by the VJ pairing with a constant (C) segment 50-52.  

After the heavy and light chain rearrangements occur, the T cell begins to 

undergo maturation and moves deeper into the thymus. In the cortex of the thymus the 

immature cells undergo positive selection where only those developing cells that 

recognize antigens presented by self-MHC molecules can mature. Those T cells that do 

not recognize antigen in the context of a self-MHC molecule are deleted by apoptosis. 

As the positively selected thymocytes move into the cortico-medullary junction of the 

thymus they undergo negative selection where those that recognize self-antigens too 

well are deleted. Negative selection helps to remove auto-reactive T cells from the 

repertoire. Finally, those thymocytes that have survived both positive and negative 

selection exit through the medulla of the thymus and enter the peripheral circulation 

where they traffic through secondary lymphoid organs monitoring the body through T 

cell receptor:peptide:MHC interactions 50-52. The significance of the wide variety of MHC 

molecules (more than fifty alleles at each of the HLA-A, HLA-B, and HLA-DR loci 

identified 53) and possible TCR rearrangements (24 million 54) is critical to the ability of 

an individual’s immune system to respond to a wide variety of pathogens.  

With an understanding of the molecular interaction between the MHC molecule 

and the TCR, the importance of T cells in the post hematopoietic stem cell transplant 

setting becomes clearer. Investigations into these reactions and their role in graft 

rejection and graft-versus-host disease were made as early as 1963 7,55. 
 

8 



www.manaraa.com

V. GVHD 
Hematopoietic stem cell transplant offers patients a potential for recovery from 

otherwise lethal conditions. However, associated with this possibility is the threat of 

graft-versus-host disease (GVHD), a reaction where the transplant recipient’s tissue is 

attacked and destroyed by the infused donor cells. GVHD-like reactions have been 

observed in mice that had been treated with allogeneic marrow after irradiation. While 

these mice recovered from their marrow ablation, the mice died from what was termed 

“secondary disease”, now known as graft-versus-host disease 41, a condition marked by 

weight loss, diarrhea, and liver and skin changes 56,57.   

In 1957, such observations in mice led Billingham to establish criteria essential 

for the development of graft-versus-host disease. The first of these criteria is that the 

graft must contain immunologically competent cells. Secondly, the recipient of this graft 

must not be able to mount an immune response against these transplanted cells, which 

would lead to their ultimate destruction. Finally, the recipient must also express antigens 

that are not present in the donor graft 58.  

Billingham’s first requirement was further understood when in 1962, Gowen 

identified the cells responsible for GVHD as small lymphocytes 59, but it was not until 25 

years after these first observations that the “immunologically competent cells” were 

actually identified as T lymphocytes 60. In 1986 Kernan demonstrated a direct 

correlation between the severity of GVHD and the number of donor T cells transfused 
67. Attempts have been made to T-cell deplete grafts (ex vivo) prior to transplant which 

decreases the risk of GVHD, and to then use “add-backs” of donor lymphocytes post 

transplant in order to promote the graft-versus-tumor effect 61-79. The complete removal 

of T cells from the graft, however, has been shown to cause an increase in graft failure 

and is, therefore, not a practical option 80,81.  

Billingham’s second requirement of the recipient being devoid of immuno-

competent cells is typically not of great concern in hematopoietic stem cell 

transplantation as recipients classically receive intense immunosuppressive treatments 

in order to prevent the recipient-mediated rejection of the donor cells 82-84.   
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With the discovery of the MHC genes and the role that they play in 

transplantation, an increased understanding of Billingham’s third requirement was 

achieved. As previously discussed, these MHC molecules are necessary for activation 

of T cells, in both autologous and allogeneic transplant settings 85. In allogeneic 

transplants the matching of the donor and recipient’s HLA antigens is one of the 

foremost criteria in selecting an appropriate hematopoietic stem cell donor. It has been 

observed, though, that even with matching of these antigens, GVHD reactions can still 

occur 86 and have been attributed to what have been termed minor histocompatibility 

antigens.  

Minor histocompatibility antigens, or mHA, have been defined as a non-MHC 

locus that can elicit allogeneic tissue rejection 87,88. Minor histocompatibility antigens are 

inherited and are not necessarily in close proximity to the HLA genes 89. It has been 

shown that certain MHC present specific mHA 90,91 and specific mHA elicit responses 

from specific TCRBV 92. There have been seventeen minor histocompatibility antigens 

identified thus far, with the expression of twelve of these being restricted to cells of the 

hematopoietic lineage 91,93,94. At the present time, while it is known that mHA differences 

can contribute to GVHD, it is difficult to predict the outcome of a hematopoietic stem cell 

transplant based upon identification of these minor histocompatibility antigens 95,96. 

One model describes the development of GVHD as occurring in two phases: the 

afferent and efferent phases. The afferent phase consists of the damage incurred to the 

recipient both by the pre-transplant conditioning regimens (chemotherapy/radiation) as 

well as by the activation of the donor T cells. It has been shown that the conditioning 

regimens cause damage to and activate tissues within the recipient, including the tissue 

of the gastrointestinal tract as well as the liver 97-100,. Such damage results in the release 

of LPS and inflammatory cytokines, such as IL-1, tumor necrosis factor (TNF) alpha, 

and interferon (IFN) gamma, from the activated tissues which causes the subsequent 

activation of host antigen presenting cells 23,101-112. Further complicating these 

circumstances is the fact that LPS and IFN gamma can act in a synergistic fashion, 

additionally increasing the levels of pro-inflammatory cytokines such as TNF alpha 113. 

In addition it has been shown that the administration of antagonists to LPS, as well as to 

the receptors for these inflammatory cytokines, has ameliorated the effects of GVHD 

10 
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103,105,110,114. The important role of LPS in GVHD is also supported by the observation 

that pathogen-free mice have reduced incidence of GVHD after allogeneic transplant 
115,116.  

The efferent stage of GVHD is comprised of the actual destruction of the 

recipient tissues by activated T lymphocytes responding to allogeneic antigens 117. A 

combination of the afferent and efferent stages contribute to the devastation seen in 

GVHD.  

GVHD can present itself in two forms, acute and chronic. Acute GVHD presents 

within the first 100 days post-transplant whereas the chronic form appears post day 

100. The pathology of the two forms show similarities, however 41.  

There are four grades of acute GVHD: I-IV, with IV being the most severe. While 

the development of GVHD grade I or II is associated with an increased risk of 

developing GVHD grade III or IV, little morbidity is associated with GVHD grade I. 

However, much greater levels of morbidity are seen with the progression of GVHD to 

grades II and III, and grade IV GVHD represents a life threatening condition 41.     

In acute GVHD the primary target organs are the skin, gastrointestinal tract, and 

liver, with the skin being the most easily observed and often first diagnosed target 

organ. In the skin, GVHD presents as erythema and rash, commonly located on the 

palms and soles initially, but can spread to involve the rest of the body. In severe 

situations, the skin may actually become desquamated (grade IV). In terms of its effect 

on the gastrointestinal tract and liver functioning, symptoms include nausea, vomiting, 

diarrhea and hyperbilirubinemia. In each instance, with increased severity of these 

symptoms or worsening laboratory findings, the higher the grade of GVHD 41.  
 

VI. Immune Suppression 
Allogeneic hematopoietic stem cell transplant recipients are routinely given 

immunosuppressive agents to facilitate engraftment and decrease the risk of developing 

GVHD post transplant. Cyclosporin A (CSA), tacrolimus (FK506), and methotrexate, are 

examples of such agents. CSA and FK506 have similar mechanisms of action, which is 

to bind to cyclophilin or FK binding protein (FKBP), respectively; the resulting drug-

protein complexes inhibit calcineurin activity 118-128. The protein calcineurin is directly 

involved in the transcription of cytokines, such as IL-2. Through the administration of 
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CSA or FK506 it is possible to inhibit expansion of allo-reactive T cells and their 

reactions post transplant. CSA and FK506 treatment is begun one day before transplant 

(d-1) and continues throughout the post transplant period.  

The mechanism of methotrexate, pulses of which the patients receive as part of 

standard GVHD prophylaxis, is through the inhibition of dihydrofolate reductase, the 

enzyme responsible for purine and pyrimidine synthesis, which leads to the suppression 

of T cell activation and adhesion molecule expression 129. Methotrexate infusions are 

administered on days 1, 3, 6, and 11 post-transplant as standard GVHD prophylaxis.  

While immunosuppressive agents such as these help to prevent graft rejection 

and GVHD, such suppression makes it difficult for the patient to mount immune 

responses against invading pathogens and also makes the patient more susceptible to 

the reactivation of latent infections, such as cytomegalovirus.         
 

VII. Infection Susceptibility 
After hematopoietic stem cell transplant patients are highly susceptible to 

bacterial, viral, and fungal infections. To decrease the risk of overwhelming infections 

post-transplant, patients receive prophylactic antibiotics. Use of prophylactic anti-fungal 

agents, such as fluconozole, decreases the occurrence of fungal infections, but in spite 

of the use of prophylactic antifungal therapy, patients can develop fungal infections 

including those attributed to Candida and Aspergillus species 130. Examples of bacterial 

infections that are commonly observed post transplant include both gram positive 

(Staphyloccocus, Enterococcus,  Clostridium, and Corynebacterium) and gram negative 

bacteria (Haemophilus and Escherichia). As previously mentioned, reactivation of latent 

cytomegalovirus (CMV) is a common occurrence post hematopoietic stem cell 

transplant 130.  
 

VIII. Identification of T Cells Involved in GVHD Through TCRBV Analysis 
In graft-versus-host disease (GVHD), the donor T cells recognize the host 

(recipient) MHC molecule as foreign, causing destruction of the cells expressing the 

allo-reactive molecule. Such reactions are also important in the recipient’s defense 

against reactivation of latent infections such as CMV. Since it is the variable region of 

the TCR that is in intimate contact with the MHC molecule, determining what specific 
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variable families of T cells can be linked to the destructive effects of GVHD has been a 

focus of investigation 131-143. Due to the prior lack of standardized nomenclature for TCR 

gene families, classification of the variable region data has become complicated 

because different investigators named the same family different names and, conversely, 

different families were named the same. To resolve this classification dilema an 

international team was formed to assign consistent and systematic names to all of the 

TCR variable gene segments. Bernhard Arden published the results in 1995 144. At 

present, there are 32 functional alpha TCR variable families in humans with 69 

subfamily members and 25 functional beta TCR variable families in humans with 91 

subfamily members. As antibodies recognizing all of these TCR variable families are not 

available, an alternative approach is to use RT-PCR to evaluate the expression of the 

messages (mRNA) used to make these surface proteins. Primer panels previously 

designed to detect the wide range of TCR variable families do not, however, detect all of 

the TCR variable families outlined in the Arden paper 138,145-189, due to the unavailability 

of the classification system at the time of primer development or the labor-intensive task 

of developing and validating a truly complete primer panel.  
 

IX. Summary 
Since its early inception, bone marrow transplantation has been used to treat 

conditions ranging from exposure to a radiation accident in the late 1950s to treating 

conditions such as leukemia and lymphoma, aplastic anemia, as well as immune-

deficiency disorders such as congenital neutropenia in the twenty first century 6.  

Despite advancements in the field of hematopoietic stem cell transplantation, 

serious complications can still occur post transplant. These include the occurrence of 

GVHD, severely immune-suppressed states that can lead to reactivation of latent 

infections such as CMV, and therapeutic agent toxicities 13,130,190.  

If it is possible to determine prior to transplant the GVHD-causing T cells, those 

cells can be depleted or inhibited prior to blood or marrow infusion, thereby preventing 

the development of GVHD. Experiments performed in mice have demonstrated that 

when TCR variable families have been identified as being implicated in GVHD, those 

cells can be depleted prior to transplant, preventing development of a graft-versus-host 

reaction 191. In addition, those cells can be adoptively transferred into a lethally 
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irradiated host and initiate a graft-versus-host disease reaction 192. Should trials in 

humans yield such predictable results, blood and marrow transplantation could become 

a treatment modality with a much-decreased risk of morbidity and mortality and offer 

hope of a cure to more patients. 
 

X. Research Objectives 
The main objective of the work presented in this dissertation is to understand the 

role of specific groups of T cells after hematopoietic stem cell transplantation in 

humans. The importance of T cells post hematopoietic stem cell transplantation has 

long been recognized. There is a significant lack of understanding, though, as to the 

role specific T cells play in this setting. This project will determine the role of specific T 

cells, as identified by expression of their T cell receptor beta variable region, in certain 

post hematopoietic stem cell transplant events. This dissertation will detail the following 

objectives: 
 

 

 

1. Develop a methodology to accurately detect expression of all the human TCRBV 

families. Many previous investigations have detailed molecular based methods 

used to identify the various TCRBV families in humans. These reports fail to 

account for the standardized classification of the TCRBV genes by the World 

Health Organization and often leave specific subfamilies and alleles undetected. 

Serological methods, such as antibody staining, have also been employed by 

prior studies. This method, too, lacks the ability to detect all of the human TCRBV 

genes. We aimed to develop a modern molecular based method that can 

specifically detect all alleles of the human TCRBV repertoire.  
 

 

2. Utilizing technology developed in objective 1, determine the association of 

specific T cell with the following post hematopoietic stem cell transplant related 

events: 
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a. Graft-Versus-Host Disease (GVHD) 

GVHD is a common post hematopoietic stem cell transplantation 

complication and we aim to determine if specific families of T cells are 

associated with the occurrence of this condition.  
 

b. Cytomegalovirus (CMV) reactivation 

During the immune suppressed state post transplant, patients often 

experience reactivation of latent infections, such as CMV, which contribute 

additional complications to the recovery stage. GVHD and CMV have 

been linked to each other in previous reports. We aim to determine (1) 

what specific families of T cells are associated with reactivation of CMV 

post transplant and (2) if there is any overlap in the T cells associated with 

both GVHD and CMV.  
 

c. Immunosuppressive therapies Cyclosporin A (CSA) and tacrolimus (FK506)   

Immunosuppressive therapies, such as CSA and FK506, are administered 

post hematopoietic stem cell transplant to curtail the development of graft 

rejection and graft-versus-host disease. These agents target activated T 

cells through their suppression of IL-2 production. We aim to determine if 

the effects of these agents on the TCRBV repertoire is the same with both 

CSA and FK506.  
  

d. Correlation of engraftment profiles to baseline donor and recipient samples  

It is not known whether the identity of the engrafting TCRBV repertoire is 

more like that found in the recipient prior to transplant or if it mimics that 

found in the donor. We aim to determine the answer to this question.  
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ABSTRACT 
 

Comprehensive gene expression analysis of the T cell receptor repertoire of an 

individual can be very useful in evaluating the immune response in a variety of 

conditions. Antibody based analysis methods can detect approximately sixty percent of 

the human T cell receptor beta variable (TCRBV) proteins, while gene expression 

analysis, primarily through employment of the polymerase chain reaction (PCR), has 

had somewhat greater success in the detection of additional TCRBV families. Many of 

these previous PCR methods, however, have been unable to detect all 91 alleles of the 

human TCRBV genes. This is primarily due to either deficiencies in the amplification of 

all of the variable beta families, subfamilies, and alleles, or the prior lack of a systematic 

classification of the TCR variable family gene segment sequences. We describe here a 

real time reverse-transcription polymerase chain reaction based method, which allows 

efficient automation and integration of amplification, detection, and analysis with 

sequence specific detection of all T cell receptor beta variable gene families, 

subfamilies, and alleles. This method, which in itself contributes significant 

improvements over existing technologies through its comprehensiveness and efficiency, 

also functions independently of variables such as sample source and sample 

processing and has the ability to run on multiple real-time PCR platforms, affording one 

the implementation of personal preferences. 
 

 INTRODUCTION  
 

T cells constitute a component of the immune system that is able to distinguish 

“self” versus “non-self”. This is accomplished through the interaction of their T cell 

receptor (TCR) with the antigen:major histocompatibility complex (a:MHC) expressed on 

the surface of cells. The αβ T cell receptor is a heterodimer, one component of which is 

a beta (B) chain, consisting of both a variable (V) and a constant (C) region. It is the 

variable region of the chain that directly contacts the a:MHC, eliciting the T cell 

response. Each individual has multiple TCRBV gene segments (or families) allowing for 

the ability to respond to a large number of a:MHC complexes 1. 
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A primary way to analyze the T cell receptor repertoire in an individual is through 

the use of antibody-based methods. Antibody based analysis methods can detect 

approximately sixty percent of the human T cell receptor beta variable (TCRBV) 

proteins, while gene expression analysis, primarily through employment of the 

polymerase chain reaction (PCR) 2, has had somewhat greater success in the detection 

of additional TCRBV families. Many of these previous PCR methods, however, have 

been unable to detect all 91 alleles of the human TCRBV genes. Such a comprehensive 

PCR strategy, however, requires the usage of both uniform and systematic 

organizations of the TCRBV genetic sequences. Such a TCRBV classification system 

was established by the World Health Organization (WHO) and has resulted in the 

identification of 25 different functional B variable families (with 91 subfamily and allele 

members total)3. Based on the WHO classification of the TCRBV families, two 

sequences reside within the same family if there is at least 50% homology between the 

two sequences. Subfamily members share at least 75% sequence homology and alleles 

of a given TCRV gene differ at no more than a few residues 3. 

Previous attempts at establishing PCR-based methods to evaluate the 

expression of all members of the TCR families have not taken into account the new 

WHO systematic classification or the wide variety of subfamilies and alleles that exist for 

many of the variable families 4-49. When possible, such references were consulted for 

potential primer sequences. However, many of those sequences did not satisfy the 

requirements of amplifying all of the various subfamilies and alleles within a given 

variable family or they inadvertently cross-amplified the sequence of a closely related 

variable family. The generation of a comprehensive panel of TCRBV primer sequences 

presented a significant challenge as the TCRBV families all share nearly 50% homology 

with each other and sequences designed to detect a specific family can inadvertently 

cross-amplify a closely related TCRBV family. We designed primers that will specifically 

detect all known alleles within the identified TCRBV families and, when possible, we 

designed a single primer to detect all alleles of a given TCRBV family, thereby 

improving on previous panels that required using multiple primer sequences to amplify 

multiple alleles of a given TCRBV family. In addition, some of the primer sequences 

from previous panels, while potentially meeting our stringent specificity requirements, 
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had a melting temperature that fell outside of our desired ten-degree melting range of 

55oC to 65oC, making it difficult to analyze expression of all of the TCRBV families in a 

single experiment with a single amplification cycling protocol. 

We describe here how we have established a complete panel of PCR primers 

that can be used with sequence specific real-time PCR methodology to evaluate the 

expression of all the TCRBV gene families, including all subfamily and allele members. 

The user has the flexibility of using many sample sources and processing methods, as 

well as benefiting from automated and integrated amplification, detection, and analysis 

in a gel free environment on a wide variety of real time PCR platforms. The technology 

can be applied to any area of study examining T cell biology, including autoimmunity, 

transplantation, cancer therapy, and infectious disease.   
 

MATERIALS AND METHODS  
 

Primer and Probe Development 
Primer sequences were developed using the TCRBV classification system 

described by Arden, et al. 3. Sequences were analyzed and potential primer sequences 

were evaluated for cross-reactivity using GenBank’s BLAST tool (National Center for 

Biotechnology Information, http://www.ncbi.nlm.nih.gov/BLAST/). Human 18S rRNA 

primers and TaqMan® probe were designed using Beacon Designer 2 software 

(PremierBiosoft International, Palo Alto, CA, USA). TaqMan® probes were analyzed for 

cross-reactivity using GenBank’s BLAST tool (National Center for Biotechnology 

Information).   
 

Peripheral Blood Samples 
A volume of ~20 mL of peripheral blood was collected, via venipuncture from 

individual healthy donors and from a hematopoietic stem cell transplant patient, into  

acid citrate dextrose VACUTAINER™ blood collection tubes (Becton Dickinson, 

Franklin Lakes, NJ, USA). Informed consent was obtained from participants after the 

nature and possible consequences of the study had been fully explained according to 

West Virginia University’s Internal Review Board guidelines. Buffy coat layers were 

isolated via centrifugation at 3300 rcf for 10 minutes. Contaminating red blood cells 

were removed by hypotonic lysis. 
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Flow Cytometric Analysis 
Peripheral blood composition was determined by light scatter profiling using a 

CELL-DYN 3500 (Abbott Diagnostics, Santa Clara, CA, USA). Additional classification 

of the lymphocyte population was performed by cell surface staining using antibodies 

specific to CD4 (Beckman Coulter, New York, NY, USA), at a volume of 20 µL antibody 

per 5 x 105 cells, CD8, and CD19 (Caltag Laboratories, Burlingame, CA, USA), both at 

antibody concentrations of 1 µg per 1 x 106 cells. Cells were blocked prior to antibody 

addition by incubating cells for five minutes at room temperature with human IgG at a 

concentration of 200 µg per 5 x 105 cells (Sigma Chemical Co., St. Louis, MO, USA). 

After antibody addition, cells were incubated 30 minutes in the dark at room 

temperature followed by a single wash with 1x PBS. The stained cells were then fixed in 

500 µL of 1% paraformaldehyde. All prepared samples were analyzed by flow 

cytometric analysis using a FACScan™ (Becton Dickinson), which had been calibrated 

using three color Calibrite™ Beads (Becton Dickinson) and FACSCOMP™ software 

(Becton Dickinson). For further lymphocyte analysis of CD19+, CD8+, and CD4+ 

expression 10,000 total events were collected for each sample. SSC and FSC data 

were acquired in the linear mode and the FL1, FL2, and FL3 parameters were collected 

logarithmically. Data analysis was performed using Windows Multiple Document 

Interface (WinMDI) version 2.8 (Joseph Trotter, The Scripps Research Institute, 

http://facs.scripps.edu/software.html).  
 

RNA Isolation 
Total RNA was isolated from 20-40 x 106 white blood cells using TRIzol® Reagent 

according to the manufacturer’s directions (Ambion, Austin, TX, USA). RNA was 

dissolved in ultra-PURE™ Distilled DNAse and RNAse free water (Invitrogen 

Corporation, Carlsbad, CA, USA). DNase treatment was performed on isolated RNA 

according to the manufacturer’s recommendations using DNA-free™ (Ambion).  RNA 

purity and concentration was determined by standard 260nm:280nm spectrophotometric 

analysis using a Genesis 10UV Spectronic Unicam (Spectronic Instruments, Rochester, 

NY, USA).  
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RT-PCR 
One Step RT-PCR was performed using the QuantiTect™ Probe RT-PCR kit 

(Qiagen, Valencia, CA, USA). Recommended reaction mixtures were scaled down to a 

total reaction volume of 20 µL using 0.04 µg RNA with the following primer and probe 

concentrations: 0.4 µM TCRBV primer (Biosource International, Camarillo, CA, USA), 

0.4 µM TCRBC primer (Biosource International), and 0.2 µM TCRBC TaqMan® probe, 5’ 

6-FAM, 3’ BHQ™-1 (Integrated DNA Technologies, Inc., Coralville, IA, USA). 18SrRNA 

control reactions were performed in parallel using 0.4 µM each of sense and anti-sense 

primers (Biosource International) and 0.2 µM 18SrRNA TaqMan® probe, 5’ 6-FAM, 3’ 

BHQ™-1 (Integrated DNA Technologies, Inc.).  

An iCycler™ (BioRad Laboratories, Hercules, CA, USA) was used for the RT and 

amplification cycles. RT was performed at 50oC for 60 minutes, max ramp speed, 

followed by an initial Taq DNA polymerase activation step of 15 minutes at 95oC, max 

ramp speed. A TouchDown PCR approach 50 was used with the following cycling 

conditions: denaturation for 15 seconds at 95oC, max ramp speed, annealing for 30 

seconds starting at 70oC decreasing by 2oC for 10 repeats, max ramp speed, and 

extension for 40 seconds at 72oC, min ramp speed. After this TouchDown of the 

annealing temperature, 50 cycles were performed as follows with the optical data 

collection occurring at the extension step: 15 seconds at 95oC (max ramp speed), 30 

seconds at 52oC (max ramp speed), and 40 seconds at 60oC (min ramp speed). 

Reactions were held at 4oC upon the conclusion of the run. Amplification efficiencies 

using cDNA dilutions were determined using the above described cycling protocol with 

the deletion of the reverse transcription cycle of 50oC for 60 minutes. 

 

cDNA isolation 
PCR products were electrophoresed on a 2% agarose gel using 20 µL PCR 

product and 4 µL tri-color 6X loading dye (Promega, Madison, WI, USA). Promega PCR 

marker was loaded into a control lane at the manufacturer’s specifications (Promega). 

Product bands were excised using the QIAquick® Gel Extraction Kit protocol according 

to the manufacturer’s instructions (Qiagen). cDNA purity and concentration was 

determined by standard 260nm:280nm spectrophotometric analysis using a Genesis 
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10UV Spectronic Unicam (Spectronic Instruments). cDNA dilutions were performed 

using ultra-PURE™ Distilled DNAse and RNAse free water (Invitrogen Corporation).  
 

Southern Blot Analysis 
Nucleic acid bands were transferred from the 2% agarose gel (described above) 

to BioBond™ Plus Nylon Membrane (Sigma Chemical Co.) using the Alkaline Southern 

Breeze™ Blotting Kit (Sigma Chemical Co.). The membrane was blocked overnight at 

room temperature using a blocking solution of 1X Saline-Sodium Citrate (SSC), 1% 

Bovine Serum Albumin (BSA) (Fisher Scientific, Pittsburgh, PA, USA), and 1% Sodium 

Dodecyl Sulfate (SDS) (Sigma Chemical Co.). A one hour incubation at room 

temperature was then performed using 20pmol biotinylated primary probe directed to 

the TCRBC region (Integrated DNA Technologies, Inc.) per mL blocking buffer followed 

by three five minute washings with a wash buffer of 1X SSC and 1% SDS (Sigma 

Chemical Co.). A streptavidin-HRP conjugate (Amersham Biosciences, Piscataway, NJ, 

USA) was added at a 1:5000 dilution in blocking buffer for 1 hour at room temperature. 

Three final five-minute washes were performed using the wash buffer. The membrane 

was developed using ECL™ detection reagents (Amersham Biosciences) according to 

the manufacturer’s instructions. The membrane was then exposed to Biomax™ MR film 

(Eastman Kodak Company, Rochester, NY, USA). The film was developed using a 100 

Plus Automatic X-Ray Film Processor (All-Pro Imaging, Hicksville, NY, USA). 
 

 

RESULTS 
 

Primer Sequence Panel 
 

The final TCRBV primer panel consists of fewer than 30 primers and one 

TaqMan® probe. The amplification of the various alleles and subfamily members for a 

given TCRBV family is diagrammed in Table I. As previously mentioned, each TCRBV 

family can have multiple subfamily members, some with additional alleles. As described 

by Arden, et al. 3, we have adhered to the accepted classification and nomenclature for 

these families and their subfamily and allele members.  
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Listed on the far left columns of Table 1 are the names of the primers and their 

respective TCRBV families, whose subfamily and allele members are listed in the 

adjacent column. A single primer was used for the amplification of a given TCRBV with 

the following exceptions: two primers were needed to amplify all BV6 (B6JLB2 and 

B6JLB3), BV12 (B12.1JLB and B12.2.3JLB), and BV13 (B13.1eJLB2 and B13.5JLB2) 

members. There is no primer to amplify BV10 or BV19 as these families only contain 

nonfunctional orphan or pseudogenes 3.  
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primer TCR TCR TCR GenBank
name(s) family subfamily sequence accession 

 
#

B1H B variable 1 BV1S1A1 PL5.2 M13836
BV1S1A2 308C M27904

B2Blum B variable 2 BV2S1A1 PL2.13 M13840
BV2S1A2 WBDP25G D13087
BV2S1A3 HT120 X57604
BV2S1A4 MT1-1 M11954
BV2S1A5 4.49 X74852

B3H B variable 3 BV3S1 PL4.4 M13843
B4H B variable 4 BV4S1A1 PL2.14 M13846

BV4S1A2 HBP48 X04926
BV4S1A3 PL5.7 M13847

B5JLB B variable 5 BV5S1A1 PL7.16 M13849
BV5S1A2 ph24 M14271
BV5S2 IGRb09 X58802
BV5S3A1 HT415.9 X57611
BV5S3A2 HT415.3 X57612
BV5S3A3 IGRb08 X58801
BV5S4A1 IGRb06 X58803
BV5S4A2 AL62.24 M97709
BV5S6A1 HT415 X57615
BV5S6A2 IGRb07 X58804
BV5S6A3 AL61.270 M97707

B6JLB2/B6JLB3 B variable 6 BV6S1A1 HBP50 X04934
BV6S1A3 4D1 M13550
BV6S2A1 HBVT23 M27383
BV6S2A2 VB6.3 X61441
BV6S3A1 HBP25 X04931
BV6S4A1 IGRb10 X58805
BV6S4A2 WBDM28A D13085
BV6S4A3 L17 beta M13552
BV6S4A4 ph22 M14261
BV6S4A5 1.4 X74844
BV6S4A6 D38 L14854
BV6S5A1 ph16 M14262
BV6S5A2 GL-PA X61443
BV6S6A1 HT147 X57607
BV6S6A2 VB6.14b L14483
BV6S8A1 VB6.11a L13762
BV6S8A2 VB6.11c L14432

B7JLB B variable 7 BV7S1A1 IGRB19 X58813
BV7S2A1 PL4.19 M13856
BV7S2A2 IGRb18 X58812
BV7S3A1 IGRb17 X58811
BV7S3A2 HT267.2 X57617

B8JLB B variable 8 BV8S1 ph11 M14265
BV8S2A1 PL3.3 M13858
BV8S2A2 ph8 M14264
BV8S3 (lambda)VB8.3 X07223

B9H B variable 9 BV9S1A1 HT307 X57614
BV9S1A2 VB9.n L06889

B11H B variable 11 BV11S1A1 PL3.12 M13861
BV11S1A2 1.3 X74845

B12.1JLB/B12.2.3JLB B variable 12 BV12S1A1 PL4.2 M13862
BV12S2A1 IGRb13 X58808
BV12S2A2 H18.1 L26230
BV12S2A3 WBDM21C D13084
BV12S3 HT96 X57609

B13.1eJLB2/B13.5JLB2B variable 13 BV13S1 PL4.24 M13863
BV13S2A1 VB13.2 X61445
BV13S3 IGRb14 X58809
BV13S4 VB13.4 X61447
BV13S5 IGRb15 X58810
BV13S6A1 IGRb16 X58815
BV13S6A2 HT165.2 X57606
BV13S6A3 3.1 X74848
BV13S6A4 VB13.n3 L06892
BV13S7 H127 L26228

B14JLB2 B variable 14 BV14S1 PL8.1 M13865
B15H B variable 15 BV15S1 ph32 M14269
B16H B variable 16 BV16S1A1 HT370 X57723
B17Blum B variable 17 BV17S1A1 HBVT02 M27388

BV17S1A2 S30.10 M97725
BV17S1A3 BV17S1 L19936

B18JLB B variable 18 BV18S1 HBVT56 M27389
B20JLB2 B variable 20 BV20S1A1 WBDM30A D13086

BV20S1A3 HUT102beta M13554
B21JLB B variable 21 BV21S1 B17ct7 D16584

BV21S2A1 IGRb02 X58797
BV21S2A2 BV21.2 M33234
BV21S2A3 V beta 21 M62377
BV21S3A1 BV21.3 M33235
BV21S3A2 IGRb01 X58796

B22H B variable 22 BV22S1A1 V beta 23 M62379
BV22S1A2 IGRb03 X58798

B23JLB2 B variable 23 BV23S1A1 V beta 22 M62378
BV23S1A2 IGRb04 X58799

B24H B variable 24 BV24S1A1 V beta 24 M62376
BV24S1A2 IGRb05 X58800
BV24S1A3 H130.1 U03115

B25JLB B variable 25 BV25S1A1 HVB30.A L26231
BV25S1A3 HsVB25 L26054

CBJLB B constant BC1 JM K02885
BC2 L34740

TCRCB probe B constant BC1 JM K02885
BC2 L34740

 

Table 1: TCRBV primer panel organization. 
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The third column from the left in Table I, entitled TCR subfamily, contains all of 

the subfamily (S) and alleles (A) for a given TCR family, per the previously described 

nomenclature system 3. The final two columns of Table I, titled TCR sequence and 

GenBank accession #, provide the reference sequences used in the development of our 

primer sequences. When available, we have provided both the sequence clone name 

as well as its listing in the GenBank database. Primer sequences are proprietary and 

are available for licensing through the Institute for Scientific Research, Inc. (Fairmont, 

WV)  

 

Peripheral Blood Composition Analysis 
 

The cellular composition of the peripheral blood from three healthy human 

donors is presented in Table II. Cellular composition is as expected for healthy donors. 

It was found that lymphocyte samples range from 30%-55% CD4+ T cells, 22%-44% 

CD8+ T cells, and 4%-11% CD19+ B cells. 
 

CD19+
WBC neutrophils eosinophils basophils monocytes lymphocytes CD4+

sample (103/uL) CD8+
4.11%

A 3.73 57.00% 1.73% 0.69% 8.98% 31.60% 54.75%
21.65%
6.32%

B 3.38 44.20% 8.08% 0.58% 6.51% 40.60% 29.62%
43.62%
10.61%

C 5.09 57.40% 1.04% 0.79% 7.21% 33.60% 40.07%
25.16%

 
 

 
Table 2: Peripheral blood composition of donor samples.  

All values are expressed as percent, except white blood cell (WBC) count, which is expressed as 
thousand cells/microliter. Lymphocyte counts were further differentiated into percent CD19+, CD4+ 
and CD8+ as depicted in far right column. 
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iCycler™ fluorescence signal corresponds to Southern Blot signal 
 

Figure 1 depicts the fluorescence readings obtained on the iCycler™ using the 

B1H/CBJLB primer set with the TCRCB TaqMan® probe. Fluorescence readings (RFU) 

are reported here as the Ct value, or the cycle at which fluorescence readings exceeded 

background fluorescence levels. Those samples with greater initial levels of target  

template have fluorescence 

levels that more quickly surpass 

these background fluorescence 

levels, or a lower Ct value, compared 

to samples with less initial copies of 

target template. The plus and minus 

template samples are indicated in 

Figure 1. The plus template sample 

has a Ct value of 12 while the no 

template sample has an expected 

Ct value >34. Plus and minus 

template samples were completed for all TCR variable family primers to ensure the 

absence of autofluorescence in the no template samples. No significant 

autofluorescence levels were detected with the TCRBC TaqMan® probe and any of the 

TCRBV primers.  

Figure 1: iCycler fluorescence readings during 

amplification of TCRBV1. 

In order to confirm the fluorescence readings obtained by the iCycler™, Southern 

Blot analysis was performed on randomly chosen TCRBV PCR products. As exampled 

by the B1H/CBJLB amplification product shown as the inset in Figure 1, the iCycler’s™ 

fluorescence readings are independently confirmed by Southern Blot analysis. Again, 

the plus and minus template samples are labeled accordingly in the inset of Figure 1. 
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Amplification Efficiency Determination 
 

cDNA was diluted into 10 fold serial 

dilutions and subjected to PCR amplification 

to determine the degree of amplification 

efficiency. Figure 2 depicts the fluorescence 

levels seen with the amplification reaction 

using the primer B6JLB2. The reaction using 

this primer was ~93% efficient, results which 

are typical for the other analyzed primer 

sets. This amplification efficiency determination indicates that the PCR detection system 

is sensitive in response to the amount of target template initially placed into the reaction 

(refer to appendix for amplification efficiency calculation equation). 

Figure 2: Amplification efficiency analysis. 

 

 

TCRV family gene expression as determined by real-time PCR 
 
Figure 3 depicts the TCRBV expression profiles from three human peripheral blood 

samples. Each data point is the mean of triplicate reactions with the standard error of 

the mean indicated. One way Analysis of Variance with Tukey’s Post Hoc test was 

performed for statistical analysis. Symbols indicate significant differences between the 

three samples for a given primer. $$(P<0.001), #(P<0.01), and *(P<0.05). Significant 

differences in expression levels were seen between samples A, B, and C for TCRBV8, 

12, 15, 16, 17, 18, 20, 23, and 25. Both TCRBV mRNA and protein expression levels 

(determined using the IOTest® Beta Mark TCR VB Repertoire Kit (Beckman Coulter)) 

demonstrated steady state expression levels (refer to appendix for method and data). 
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Figure 3: Relative TCRBV mRNA expression levels of three human 

peripheral blood samples based on Ct values  

Figure 3: Relative TCRBV mRNA expression levels of three human peripheral blood samples based on Ct 
values 

(samples A, B, and C). $$ (P<0.001), # (P<0.01), * (P<0.05). 

 Note: A Ct difference of ~3.5 cycles was required to achieve 95% confidence, or p<0.05 
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Figure 4 depicts the relative TCRBV1 expression profile, as determined by Ct 

values, of a hematopoietic stem cell transplant patient prior to and following transplant. 

The patient was a 54 year-old male being treated for chronic lymphocytic leukemia and 

received peripheral blood hematopoietic stem cells from a matched related donor. The 

patient had a staphylococcus infection, as well as graft-versus-host disease and 

cytomegalovirus complications, immediately following transplant. These complications 

resolved but the patient expired at week 14 post- transplant from graft-versus-host 

disease complications. Significant changes in TCRBV1 expression were observed over 

time between weeks –1 and 3, weeks 3 and 4, weeks 7 and 8, and weeks 8 and 9. 

Figure 4:TCRBV1 expression level changes in a hematopoietic stem cell transplant recipient before and 
after transplant. 

 

Each data point is the mean of triplicate reactions with the standard error of the mean indicated. One 
way Analysis of Variance with Bonferroni’s Multiple Comparison test was performed for statistical 
analysis to monitor changes in the TCRBV1 expression from week-to-week. $$(P<0.001), #(P<0.01), 
and *(P<0.05). 
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 DISCUSSION 
 

Through the employment of primer panels previously developed 4-49, many 

investigators have examined the usage of the human TCR beta variable genes under 

various biological conditions. Many of these reports, however, fall short of the desired 

comprehensiveness to detect all TCRBV members. For example, due to the more 

recent identification and classification of TCRBV families 21, 22, 23, 24, and 25, many 

previous reports do not include analysis of some or all of these additional five families 4-

17,20-30,32-39,41-43,45,46. Additionally many also would not amplify all subfamily and allele 

members within a given TCRBV family. For example, based on sequence homology 

analysis the panel proposed by Blumberg, et al., 7 will not amplify the subfamily member 

BV8.3. 

Others have tried different approaches to the amplification of all TCRBV 

subfamily and allele members. For example, Lynas, et al., 28 describe the use of single 

primers to detect BV2/BV4 and BV18/BV8.3. Tsuruta, et al., 44 have five separate 

primers in their panel to amplify all members of the TCRBV5 family while we have been 

able to identify a single primer sequence that we predict will amplify all 5 subfamilies 

(including all 11 possible alleles). Therefore, a primer panel that will amplify all possible 

alleles for the TCRBV families using as few primers as possible is a noteworthy 

improvement in the area of T cell receptor gene expression analysis, as sample 

availability is often a limiting factor.  

While most of the previously cited primer panels we reviewed relied on 

conventional PCR, followed by gel analysis and Southern Blotting or the inclusion of 

labeled primers or nucleotides for sequence analysis there is at least one report of the 

use of TCRBV primers in a SYBR green reaction 42. While the paper by Sebille et al., 

yields to the same primer sequence concerns as many of the others, as it traces its 

primer sequence roots back to the primers described by Genevee et al., 15 and Gorski et 

al., 17, this does move the field of TCRBV gene expression analysis into the real-time 

PCR arena. We have experimented with SYBR green reactions previously but prefer 

the ease of analysis and additional sequence specificity offered by a TaqMan® probe. 
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While our study focuses on the use of peripheral blood samples, there is nothing 

intrinsic about our method that prevents using cells from other sources, for example cell 

cultures, tissue samples, or synovial fluid. We have previously used silica membrane-

based extraction kits, such as GenElute™ Mammalian Total RNA Kit (Sigma Chemical 

Co.), Rneasy® kit (Qiagen) and PAXgene™ Blood RNA kit (PreAnalytiX, Switzerland). 

However, we chose to isolate RNA from our samples using phenol-chloroform 

extraction, due to our success with improved yields compared to the silica membrane-

based technologies. While we chose to use the BioRad iCycler™ due to its availability 

at our facilities, its larger sample capacity, and the permitted usage of conventional PCR 

tubes, we have previously used the Roche Lightcycler®, demonstrating the flexibility of 

platform usage but not validity that the primers provide equivalent results across all 

platforms. 

Consistent with previous reports 51-54, differences in TCRBV expression levels do 

exist between individuals and the level of those differences can change with time and 

health of the individual.  Our technology has not only been demonstrated functional by 

the usage of sequence specific probes in real time PCR but has also been verified by 

Southern Blot analysis and flow cytometry utilizing available TCRBV antibodies, with the 

latter supporting the notion that the increased expression levels we observed with the 

PCR system were due to the increased number of cells expressing such receptors as 

opposed to only an increase in the amount of message in a given cell.  

In terms of amplification efficiency, if a PCR reaction is 100% efficient, there will 

theoretically be a decrease in the Ct value by one each time the template amount is 

doubled (Roche Molecular Biochemicals, Technical Note No. LC 11/2000). Therefore, 

for a 10-fold dilution, a difference of 3.25 cycles should be observed between each 10-

fold dilution. Our methodology is not only comprehensive but it is also efficient with a 

typical amplification efficiency of ≥ 90%. 

In conclusion, we have presented here a significant improvement to existing 

technologies that enable one to detect all of the families, subfamilies, and alleles of the 

TCRBV regions classified by Arden et al., 3 using efficient, sequence specific real-time 

PCR methodology. The user benefits from automated and integrated amplification, 

detection, and analysis in a gel free environment with the choice of using various PCR 
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platforms, sample sources, and sample processing methods. Additionally, this PCR-

based method is approximately 25-fold less expensive than comparable flow cytometry 

based methods. This technology can be applied to any area of study examining T cell 

biology, including autoimmunity, transplantation, cancer therapy, and infectious disease.   
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THE PREVIOUS CHAPTER DESCRIBED THE DEVELOPMENT OF IMPROVED 
TECHNOLOGY CAPABLE OF ACCURATELY AND EFFICIENTLY DETECTING 
EXPRESSION OF ALL OF THE HUMAN TCRBV GENES.  
 
THERE ARE MANY POTENTIAL APPLICATIONS OF SUCH TECHNOLOGY. 
 
FOR MY PURPOSES, HOWEVER, I UTILIZED THE TECHNOLOGY TO DETERMINE 
WHAT SPECIFIC T CELLS ARE ASSOCIATED WITH THE FOLLOWING SPECIFIC 
EVENTS AFTER ALLOGENEIC HEMATOPOIETIC STEM CELL TRANSPLANTATION: 
 
 
 
1) GRAFT-VERSUS-HOST DISEASE 
2) CYTOMEGALOVIRUS REACTIVATION 
3) IMMUNOSUPPRESSIVE THERAPIES (CYCLOSPORIN A AND TACROLIMUS) 
4) ENGRAFTMENT OF THE TCRBV REPERTOIRE 
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CHAPTER 3 
 

 

 

SIMILARITY IN REPERTOIRE OF T CELLS ASSOCIATED WITH 

OCCURRENCES OF CMV REACTIVATION AND GVHD POST HUMAN 

HEMATOPOIETIC STEM CELL TRANSPLANTATION. 
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ABSTRACT 
 

Cytomegalovirus (CMV), after initial infection, typically remains in a latent state 

and reactivates during periods of immune suppression, such as after allogeneic 

hematopoietic stem cell (HSC) transplant. Prior studies have indicated a restricted 

usage of specific TCRBV families directed against CMV antigens in otherwise healthy 

individuals. We monitored, on a weekly basis, the usage of the T cell receptor beta 

variable (TCRBV) repertoire in the peripheral blood of five HSC transplant recipients 

using real-time RT-PCR and found that several TCRBV families (TCRBV 1-6, 11, 12.1, 

13 (excluding 13.5), 15, 16, 20, 25) were significantly associated with CMV reactivation. 

In addition, significant overlap exists in these families and those found to be associated 

with graft-versus-host disease (GVHD), a common T cell mediated post transplant 

complication. Our results may help to explain the common clinical association of CMV 

reactivation and GVHD. 

 
 

INTRODUCTION 
 

Cytomegalovirus (CMV) is a human herpes virus that infects greater than 60% of 

the world’s adult population1. While this virus typically presents itself as a latent 

infection, it commonly reactivates during immuno-suppressed states, such as after 

allogeneic hematopoietic stem cell transplant (HSCT) 2. Prior studies have indicated a 

restricted usage of specific T cell receptor beta variable (TCRBV) families directed 

against CMV antigens in otherwise healthy individuals 3-6. We here examine the 

expression of specific TCRBV families associated with CMV reactivation following 

allogeneic hematopoietic stem cell (HSC) transplantation. In addition, we determined 

that overlap exists in the TCRBV families associated with CMV reactivation and graft-

versus-host disease (GVHD), supporting previous reports of the clinical association of 

GVHD and CMV reactivation 7-9. GVHD is a common post transplant complication 

where the donor-derived T cells attack and destroy the recipient’s tissue based upon 

allogeneic disparities between the T cell receptor (TCR) and peptide:major 

histocompatibility complex (p:MHC) 10. In our study peripheral blood samples were 

collected weekly from allogeneic HSC recipients through day 100 post-transplant. Donor 
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and recipient peripheral blood samples were also collected prior to pre-transplant 

conditioning therapies in order to serve as baseline reference samples. Despite the 

complexities of the post transplant environment, we found that specific subsets of T 

cells were significantly associated with CMV reactivation and that many of these same 

TCRBV families were also associated with the development of GVHD in the patient 

population studied.  
 

 

 

MATERIALS AND METHODS 
 
Patient population 
 

Study subjects were patients undergoing allogeneic transplant treatment at West 

Virginia University’s Blood and Marrow Transplant and Hematological Malignancy 

Program, Morgantown, West Virginia (Table 1). Informed consent was obtained from 

participants after the nature and possible consequences of the study had been fully 

explained according to West Virginia University’s Institutional Review Board guidelines. 

Prior to peripheral blood stem cell (PBSC) infusion, study recipients underwent 

myeloblative conditioning regimens consisting of either Thiotepa (500 mg/m2 q12h x 2 

doses), Campath-1H (20mg x 2 doses), and total body irradiation (TBI) (200 cGy x 5 

fractions) or Busulfan (1mg/kg p.o. q6h x 16 doses) and Cytoxan (60 mg/kg/d x 2 

doses). A 20 mL peripheral blood sample was collected weekly, via venipuncture from 

hematopoietic stem cell transplant patients, into an acid citrate dextrose 

VACUTAINER™ blood collection tube (Becton Dickinson, Franklin Lakes, NJ, USA). 

Buffy coat layers were isolated via centrifugation at 3300 rcf for 10 minutes. 

Contaminating red blood cells were removed by hypotonic lysis.  
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recipient sex age disease donor pretreatment CMV status post tranplant 
regimen recipient/donor complications

1 M 54 AML MRD TT/TBI/Campath neg/neg GVHD grade I
bacterial pneumonia

viral mouth sores
staphylococcus infection

bacterial URI/sinusitis
2 M 54 CLL MRD TT/TBI/Campath pos/neg GVHD grades II and IV

CMV reactivation
staphylococcus infection

3 M 51 NHL MRD TT/TBI/Campath pos/neg GVHD grade II
CMV reactivation

staphylococcus infection
4 F 41 CML MRD TT/TBI/Campath neg/neg GVHD grade III

C. difficile
viral mouth sores

Enterococcus faecalis 
5 F 41 CML MUD Bu/Cy2 pos/pos GVHD grade II

CMV reactivation
bacterial gastritis

Cornybacter diptheroid
 

Table 1: Patient demographics 

 

All patients received peripheral blood hematopoietic stem cell transplants from an HLA-matched related 
donor (MRD) with the exception of recipient 5, who received stem cells from an HLA-matched unrelated 
donor (MUD). HLA matching was performed serologically for all MRD but was determined using 
molecular typing for MUD. Cytomegalovirus (CMV) status was determined in both recipient and donor 
prior to transplant by evaluating CMV IgG and IgM serum levels. CMV reactivation was monitored weekly 
by antigenemia testing for recipients at risk for CMV reactivation (donor and/or recipient with prior history 
of CMV exposure). Complications experienced in the recipient post transplant, as determined by standard 
clinical evaluation, are indicated on the far right side of the table. All patients were living at the conclusion 
of our study. Abbreviations: M, male; F, female; AML, acute myelogenous leukemia; CLL, chronic 
lymphocytic leukemia; NHL, non-Hodgkin lymphoma; CML, chronic myelogenous leukemia; TT, Thiotepa; 
TBI, total body irradiation; Bu, Busulfan; Cy2, Cytoxan; GVHD, graft-versus-host disease. 
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Donors 
 

All donors were serologically HLA matched to the recipient at a minimum of HLA-

A, B, and DR loci. The patient undergoing an unrelated donor transplants was also 

molecularly matched at the allele level. PBSC donors were mobilized with filgrastim (G-

CSF) at 10ug/kg/day for 5 days with stem cell collection occurring on day 5. The 

number of PBSC collected was 3-5 x 106 HSC/kg of recipient body weight.  
 

 

GVHD Prophylaxis and Supportive Care 
 

Cyclosporin A (CSA) or tacrolimus (FK506) treatment started one day before 

transplant (d-1) as part of standard graft-versus-host disease prophylaxis and continued 

throughout the study period. The patients also received pulse methotrexate as part of 

GVHD prophylaxis. Patients were monitored bi-weekly for CSA and FK506 serum 

concentrations, with dosages adjusted as necessary to be within the preferred protocol 

serum concentrations of 200+/-20 ng/mL for CSA and 7-12 ng/mL for FK506. Additional 

supportive care, including anti-fungal, anti-viral, and anti-PCP prophylaxis were 

provided according to standard operating policies. CMV reactivation was monitored 

weekly by antigenemia testing (ViroMed Laboratories, Inc., Minnetonka, MN). 
 

 

RNA Isolation 
 

Total RNA was isolated from 20-40 x 106 white blood cells using TRIzol® Reagent 

according to the manufacturer’s directions (Ambion, Austin, TX, USA). RNA was 

dissolved in ultra-PURE™ Distilled DNAse and RNAse free water (Invitrogen 

Corporation, Carlsbad, CA, USA). DNase treatment was performed on isolated RNA 

according to the manufacturer’s recommendations using DNA-free™ (Ambion, Austin, 

TX, USA). RNA purity and concentration was determined by standard 260nm:280nm 

spectrophotometric analysis using a Genesis 10UV Spectronic Unicam (Spectronic 

Instruments, Rochester, NY, USA).  
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RT-PCR 
 

One Step RT-PCR was performed using the QuantiTect™ Probe RT-PCR kit 

(Qiagen, Valencia, CA, USA). Recommended reaction mixtures were scaled down to a 

total reaction volume of 20 µL using 0.04 µg RNA with the following primer and probe 

concentrations: 0.4 µM TCRBV primer (Biosource International, Camarillo, CA, USA), 

0.4 µM TCRBC primer (Biosource International, Camarillo, CA, USA), and 0.2 µM 

TCRBC TaqMan® probe, 5’ 6-FAM, 3’ BHQ™-1 (Integrated DNA Technologies, Inc., 

Coralville, IA, USA). 18SrRNA control reactions were performed in parallel using 0.4 µM 

each of sense and anti-sense primers (Biosource International, Camarillo, CA, USA) 

and 0.2 µM 18SrRNA TaqMan® probe, 5’ 6-FAM, 3’ BHQ™-1 (Integrated DNA 

Technologies, Inc., Coralville, IA, USA). Primer and probe sequences were previously 

described (Brewer and Ericson, J. of Immunol. Methods, in press). An iCycler™ 

(BioRad Laboratories, Hercules, CA, USA) was used for the RT and amplification 

cycles. RT was performed at 50oC for 60 minutes, max ramp speed, followed by an 

initial Taq activation step of 15 minutes at 95oC, max ramp speed. A TouchDown PCR 

approach 11 was used with the following cycling conditions: denaturation for 15 seconds 

at 95oC, max ramp speed, annealing for 30 seconds starting at 70oC decreasing by 2oC 

for 10 repeats, max ramp speed, and extension for 40 seconds at 72oC, min ramp 

speed. After this TouchDown of the annealing temperature, 50 cycles were performed 

as follows with the optical data collection occurring at the extension step: 15 seconds at 

95oC (max ramp speed), 30 seconds at 52oC (max ramp speed), and 40 seconds at 

60oC (min ramp speed). Reactions were held at 4oC upon the conclusion of the run.  
 

 

Statistical Analyses 
 

One-way analysis of variance with Bonferroni’s Multiple Comparison Test was 

used to determine the TCRBV families associated with GVHD and CMV reactivation. 
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RESULTS 
 
 
Increased expression of specific TCRBV families is associated with reactivation 
of cytomegalovirus post peripheral blood hematopoietic stem cell transplant. 
 

Using serial time points, we analyzed the alterations in TCRBV expression over 

time to determine which TCRBV families were associated with CMV reactivation 

compared to periods without CMV reactivation. All patients in our study were 

determined to be 100% donor engrafted at day 30 post-transplant, with the exception of 

recipient 5, whose chimerism analysis was not performed until day 100 post transplant, 

at which point chimerism was also determined to be 100% donor in origin. We found an 

increase in the expression of TCRBV families 1-6, 11, 12.1, 13 (excluding 13.5), 15, 16, 

20, and 25 with CMV reactivation compared to sampling periods in which CMV 

antigenemia was not detected (Table 2).  

 

Increased expression of specific TCRBV families is associated with Graft-versus-
Host Disease post peripheral blood hematopoietic stem cell transplant and has 
significant similarity to those families linked to CMV reactivation. 
 

In addition to investigating the increased expression of specific TCRBV families 

in the setting of CMV reactivation, we also examined the expression profiles of TCRBV 

families associated with GVHD post HSC transplant. By weekly monitoring of the T cell 

repertoire, in addition to baseline sampling, we were able to circumvent some of the 

concerns associated with previous GVHD reports, such as the lack of baseline samples 

and serial time point analyses 12-17. All five of our patients developed acute GVHD post 

HSCT, primarily grades I-II (Table 1). When we examined the TCRBV expression profile 

during periods when patients had GVHD and compared this to periods without GVHD, 

we found significant increases in the expression of TCRBV 1-6, 12.1, 13 (excluding 

13.5), and 16, associated with GVHD grades I-II, with an additional increase in TCRBV 

18 seen in a patient with GVHD grade IV (Table 2).  
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TCRBV increases associated with TCRBV increases associated with
CMV reactivation GVHD grade I/II

1 1
2 2
3 3
4 4
5 5
6 6
11

12.1 12.1
13 (excluding 13.5) 13 (excluding 13.5)

15
16 16

*18
20
25  

Table 2: Increased expression of specific families of TCRBV is associated with cytomegalovirus (CMV) 

reactivation and Graft-versus-Host Disease (GVHD) post peripheral blood stem cell transplant. 

Specific TCRBV families were significantly increased (p<0.05) with the occurrence of CMV reactivation, 
compared to periods in which CMV antigenemia was not detected and also with the occurrence of GVHD 
grades I and II, compared to periods without GVHD complications. *In a patient with grade IV GVHD an 
increase in TCRBV18 was seen in addition to the increase in TCRBV families seen in GVHD grades I-II. 

 

 

 
DISCUSSION 

 

A number of studies have examined the role of specific T cells in the immune 

response to CMV antigens. While a previous study looking at the TCRBV expression 

during CMV reactivation in kidney and liver transplants found no preference for TCRBV 

usage 18, we found great similarity in our results and those examining the TCRBV 

expression of CMV reactive T cells found in otherwise healthy individuals 3-6. For 

example, studies using CMV reactive T cell from healthy donors expressed TCRBV 

families 2 and 20 6, TCRBV families 3, 6.7, 13.1, and 20 5, and TCRBV families 1, 2, 

5.1, 12, 13.1, and 16 3. Many of these previous studies utilized tetramer technology to 

remove CMV reactive T cells, which were then analyzed for TCRBV expression via 

antibody staining and flow cytometry. The greatest limitation of previously described 
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studies is that antibodies were not available to all of the TCRBV families, such as 

TCRBV 4, 11, 13, 15, and sometimes 25. We suspect that the reason we detected the 

expression of additional TCRBV families with CMV reactivation compared to these 

previous studies was that we used a primer panel that could detect all of the TCRBV 

families and their alleles.  

Similarly a number of reports have described the association of specific TCRBV 

families with GVHD, with some of these studies not only examining peripheral blood 

samples but also GVHD tissue lesions 12-17,19-25. Many of these studies, however, 

contained very limited numbers of sampling points; for example some studies primarily 

evaluated samples upon the diagnosis of GVHD and others did not contain baseline 

sampling 12-17. In this aspect, our study significantly adds to the investigation of immune 

response after hematopoietic stem cell (HSC) transplantation by providing serial time 

point analyses using a comprehensive primer panel, which can detect all TCRBV 

families and alleles.  

Several reports have detailed the clinical association of GVHD and CMV 

reactivation 7-9. Larsson et al., observed a decreased risk for the development of GVHD 

when patients were preemptively treated with anti-viral therapy 7,8 while Vassallo et al., 

observed an association between skin GVHD and the presence of CMV antigens in the 

patient’s peripheral blood 9. A recently published study noted cross reactivity of an HLA-

DR7 restricted CMV-specific T cell for an HLA-DR4 allo-antigen 7. This could possibly 

account for the overlap we saw in TCRBV families associated with both GVHD and 

CMV reactivation.  

In conclusion, the developing immune system found in hematopoietic stem cell 

transplant patients responds to CMV antigen exposure with the alteration of the TCRBV 

profile with great similarity to that described in prior non-transplant related reports. 

Additionally, great similarities exist in the alterations of the TCRBV profile associated 

with CMV reactivation and the occurrence of GVHD, supporting prior reports of such a 

clinical association.  
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CHAPTER 4 
 

 

 

ENGRAFTMENT OF T CELL RECEPTOR (TCR) REPERTOIRE IN 

MYELOABLATED ALLOGENEIC HEMATOPOIETIC STEM CELL 

RECIPIENTS MIMICS DONOR TCR REPERTOIRE. 
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ABSTRACT 
 

Hematopoietic stem cell (HSC) transplantation is used to rescue the immune 

system in patients who have received myeloblative regimens targeted at eradication of 

various hematological malignancies. In allogeneic HSC transplantation, stem cells from 

a healthy donor are infused into the recipient with the intent of reconstituting the 

recipient’s immune system. Using the most comprehensive set of TCRBV primers 

available, we determined through real time RT-PCR that the reconstitution of the 

recipient’s T cell repertoire post- hematopoietic stem cell transplant was of a higher 

correlation to that found in the donor compared to that found in the recipient prior to 

transplant. Our results argue that, despite the influence of the recipient’s environment, 

the donor stem cells mature in the recipient’s body with a TCRBV repertoire reminiscent 

of that found in the donor. 
 

INTRODUCTION 
 

The major goal of allogeneic hematopoietic stem cell transplantation is to achieve 

complete engraftment of healthy donor hematopoietic stem cells and subsequent 

immune reconstitution within the new environment of the recipient. T cells are a critical 

component of the recipient’s defense system against invading pathogens and the 

reactivation of latent infections through the recognition of antigen through the T cell 

receptor (TCR). While T cells play a critical role in the immune system’s defenses, it is 

not known whether the maturing T cells found in the recipient display a T cell receptor 

beta variable (TCRBV) repertoire more like that in the donor or if they exhibit a 

repertoire more reminiscent of that found in the recipient prior to transplant. In this 

study, we used real-time RT-PCR and a comprehensive panel of primers, developed in 

response to the reclassification of the TCR genes 1, to monitor the profile of the 

engrafting TCRBV regions. In the first 100 days after transplant, despite the influence of 

the recipient’s HSC environment on the development of the immature cells 2-4, the T cell 

repertoire appears to develop with a phenotype more reminiscent of that found in the 

donor as opposed to that found in the recipient prior to transplant. 
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MATERIALS AND METHODS 
 
Patient population 
 

Study subjects (n=4) were patients undergoing transplant treatment at West 

Virginia University’s Blood and Marrow Transplant and Hematological Malignancy 

Program, Morgantown, West Virginia. Informed consent was obtained from participants 

after the nature and possible consequences of the study had been fully explained 

according to West Virginia University’s Institutional Review Board guidelines. All study 

patients received hematopoietic stem cells collected from the peripheral blood of 

mobilized donors who had been primed with G-CSF. The donors were serologically HLA 

matched to the recipient at a minimum of HLA-A, B, and DR loci. Prior to peripheral 

blood stem cell (PBSC) infusion, study recipients underwent myeloblative conditioning 

regimens consisting of either Thiotepa (500 mg/m2 q12h x 2 doses), Campath-1H 

(20mg x 2 doses), and total body irradiation (TBI) (1000 cGy total dose: given in 200cGy 

fractions) or Busulfan (1mg/kg p.o. q6h x 16 doses) and Cytoxan (60 mg/kg/d x 2 

doses) (Table 1). Full supportive care, including GVHD prophylaxis, anti-fungal, anti-

viral, and anti-PCP prophylaxis, empiric anti-microbial therapy for neutropenic febrile 

episodes, and transfusions were provided per standard operating policies. Peripheral 

blood, ~20 mL, was collected weekly, via venipuncture from hematopoietic stem cell 

transplant patients, into an acid citrate dextrose VACUTAINER™ blood collection tube 

(Becton Dickinson, Franklin Lakes, NJ, USA). Buffy coat layers were isolated via 

centrifugation at 3300 rcf for 10 minutes. Contaminating red blood cells were removed 

by hypotonic lysis. 
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recipient sex age disease donor pretreatment immunosuppressive CMV status
regimen therapy recipient/donor

1 M 54 AML MRD TT/TBI/Campath CSA neg/neg

2 M 54 CLL MRD TT/TBI/Campath CSA pos/neg
except for w+12 

when switched to FK506 
to treat GVHD IV

3 M 51 NHL MRD TT/TBI/Campath CSA pos/neg

4 F 41 CML MUD Bu/Cy2 CSA pos/pos

 

Table 1: Patient demographics 

 

All patients received peripheral blood hematopoietic stem cell transplants from an HLA-matched related 
donor (MRD). HLA matching was performed serologically. Cytomegalovirus (CMV) status was determined 
in both recipient and donor prior to transplant by evaluating CMV IgG and IgM serum levels. Complications 
experienced in the recipient post transplant, as determined by standard clinical evaluation, are indicated on 
the far right side of the table. All patients were living at the conclusion of our study. Abbreviations: M, male; 
F, female; AML, acute myelogenous leukemia; CLL, chronic lymphocytic leukemia; NHL, non-Hodgkin 
lymphoma; CML, chronic myelogenous leukemia; TT, Thiotepa; TBI, total body irradiation; Bu, Busulfan; 
Cy2, Cytoxan; GVHD, graft-versus-host disease. 

RNA Isolation 
 

Total RNA was isolated from 20-40 x 106 white blood cells using TRIzol® Reagent 

as previously described (Brewer and Ericson, J. of Immunol. Methods, in press). RNA 

was dissolved in ultra-PURE™ Distilled DNAse and RNAse free water (Invitrogen 

Corporation, Carlsbad, CA, USA). DNase treatment was performed on isolated RNA 

according to the manufacturer’s recommendations using DNA-free™ (Ambion, Austin, 

TX, USA). RNA purity and concentration was determined by standard 260nm:280nm 

spectrophotometric analysis using a Genesis 10UV Spectronic Unicam (Spectronic 

Instruments, Rochester, NY, USA).  
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RT-PCR 
 

One Step RT-PCR was performed using the QuantiTect™ Probe RT-PCR kit 

(Qiagen, Valencia, CA, USA) with sequence specific detection as previously described 

(Brewer and Ericson, J. of Immunol. Methods, in press). 

 

Statistical Analyses 
 

Spearman rank correlation coefficient analysis was used to determine the 

correlation of the TCRBV engraftment phenotypes.  
 

 

RESULTS AND DISCUSSION 
 
The TCRBV repertoire engrafts with a phenotype similar to that present in the 
donor. 
 

By analyzing the expression of all of the TCRBV families in the donor and 

recipient pre-transplant followed by weekly analysis of these families in the recipient 

post transplant, we could monitor the TCRBV phenotype of the recipient’s engrafted 

cells during the early reconstitution period (Table 2). While neutrophil engraftment 

begins one to two weeks after transplant, complete restoration of the CD3+ population 

typically requires many months post-transplant 5. We compared correlation parameters 

at weekly intervals and here report the correlation seen at baseline and at day 100. The 

day 100 TCRBV expression patterns obtained from patients 1, 2, and 3 showed a 

stronger correlation to the baseline donor TCRBV expression profile compared to the 

recipient’s baseline TCRBV repertoires (sample 1: -0.193 vs. 0.68, sample 2: 0.330 vs. 

0.510, sample 3: 0.329 vs. 0.664). At the conclusion of this study, there was a 

decreased correlation of recipient samples to their own pre-transplant TCRBV profile 

when compared to the donor’s baseline TCRBV expression profile (sample 1: -0.219 vs. 

0.68, sample 2: 0.289 vs. 0.510, sample 3: 0.537 vs. 0.664). These results were 

compared to the correlation of the TCRBV repertoire found in healthy peripheral blood 

donors over a period of two weeks, which exhibited a correlation to self of ~0.75 (Table 

2).  
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sample correlation to self correlation to donor correlation to self correlation to donor

t =0 (baseline) t =0 (baseline) t =d+100 t =d+100
recipient 1 1 -0.192820513 -0.218803419 0.68
recipient 2 1 0.33025641 0.289230769 0.51042735
recipient 3 1 0.329230769 0.536752137 0.663931624
recipient 4 1 0.517264957 0.361367521 0.246495726

healthy volunteer correlation to self correlation to self
donors t =0 (baseline) t =+2 weeks
donor 1 1 0.748462
donor 2 1 0.756154
donor 3 1 0.789231
donor 4 1 0.742692

 

Table 2: The TCRBV repertoire engrafts with a phenotype similar to that present in the donor. 

Spearman rank correlation coefficients were determined for the TCRBV repertoire expression 
in both recipient and donor prior to transplant (baseline) and at the conclusion of the study 
(day +100). A correlation coefficient of one represents a perfect correlation. All recipients, 
with the exception of recipient 4, had a greater correlation to the donor than to themselves at 
day +100. This is compared in the context of the TCRBV repertoire observed in healthy 
individuals over a two-week period.  

 

 

With a single exception, recipient 4, we observed the engraftment of a T cell  

receptor phenotype with greater correlation to baseline profiles found in the donors, as 

opposed to those found in the recipients, prior to transplant. Recipient number 4 was 

the only patient in our study who received a different pre-conditioning regimen, Cytoxan 

and Busulfan, compared to the TT/TBI/Campath-1H regimen. One possible explanation 

for this difference is the highly T-cell suppressive effect observed in patients who 

receive a preparative regimen containing Campath-1H (anti-CD52), an agents whose 

effects linger due to its persistence in patient serum several weeks after its final 

administration.  
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All patients were determined to be 100% donor engrafted at day 30 post-

transplant, with the exception of recipient 4, whose chimerism analysis was not 

performed until day 100 post transplant, at which point chimerism was also determined 

to be 100% donor in origin. While these results are preliminary, they suggest that the 

developing TCRBV repertoire in the recipient is more closely reflecting that found in the 

donor as opposed to that found in the recipient prior to transplant. It is unlikely that 

these results are attributable to mature donor T cells found within the graft as recipients 

received Campath therapy (anti-CD52), which targets T cells for antibody dependent 

lysis 6 and samples also exhibited the formation of TRECs.  
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CHAPTER 5 
 

 

 

CYCLOSPORINE A (CSA) AND TACROLIMUS (FK506) 

DIFFERENTIALLY ALTER T CELL RECEPTOR (TCR) EXPRESSION     

IN VIVO. 
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ABSTRACT 
 

Cyclosporin A (CSA) and tacrolimus (FK506) are two common 

immunosuppressive agents used post blood and marrow transplantation. They exert 

their effects through the inhibition of calcineurin activity and subsequent inhibition of IL-2 

production. IL-2 is a cytokine needed for proliferation of activated T cells, an immune 

cell commonly responsible for post transplant complications such as graft rejection and 

graft-versus-host disease. Despite similarity in their mode of action, we observed 

polarized effects of CSA and FK506 on the human T cell repertoire, as monitored 

through the expression of the T cell receptor beta variable (TCRBV) regions. To 

determine the possible mechanism for this difference, in vitro experiments using the 

Jurkat human T-cell line were performed. The effects of CSA and FK506 on cell 

viability, cell proliferation, IL-2 production, and calcineurin inhibition were determined 

and no significant differences between the two agents were observed. The data suggest 

that a secondary mechanism of action exists for the different TCRBV repertoire induced 

by exposure to CSA and FK506.  
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INTRODUCTION 
 

Immunosuppressive agents are widely used in the treatment of various medical 

conditions, in particular for allogeneic blood and marrow transplantation (BMT). Post 

transplant recipients are at a significant risk of rejecting their graft or developing a 

condition known as graft-versus-host disease (GVHD). T lymphocytes are known to be 

the primary immune mediators of such reactions 1,1-5. Cyclosporin A (CSA) and 

tacrolimus (FK506) are two commonly employed agents used to prevent allograft 

rejection and to decrease the risk of developing GVHD in the BMT setting 6. 

Figure 1: Abbreviated schematic of the signaling pathway activated by engagement of the T cell receptor 
(TCR) and its inhibition by CSA and FK506. 

Abbreviations: p:MHC, peptide:major histocompatibility complex; TCR, T cell receptor; ITAMS, 
immunoreceptor tyrosine-based activation motifs; PLC, phospholipase C; PIP-2, phosphatidylinositol 
biphosphate; IP3, inositol triphosphate; DAG, diacylglycerol; Ca2+, calcium; CaM, calmodulin; PKC, 
protein kinase C; CSA, cyclosporin A; FKBP, FK-binding protein; NFAT, nuclear factor of activated T 
cells; NFκB, nuclear factor κB; IL2, interleukin 2.  
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The overall effect of CSA and FK506 is to impair the production of interleukin 2 

(IL-2) by T lymphocytes. This is accomplished through the binding of CSA and FK506 to 

cyclophilin 7,8 and FK506-binding proteins 9-12, respectively. This binding causes the 

subsequent inhibition of the protein  calcineurin, a protein critical to the production of IL-

2 (Figure 1) 13-16. IL-2 is produced primarily by activated T cells and is required for T cell 

proliferation 17. Since extensive similarities  (including mechanism of action and agent 

entry into cells) exist between CSA and its derivative, FK506 18, suppression of the T 

lymphocyte response is expected to be comprehensive and similar between the two 

agents. However, we observed polarized effects of CSA and FK506 on the T cell 

repertoire, as monitored through T cell receptor beta variable region (TCRBV) 

expression patterns. FK506 suppressed the expression of the majority of TCRBV 

families while an increased expression in specific TCRBV families was observed with 

CSA. Cell viability, proliferation, IL-2 production, and calcineurin activity in response to 

CSA and FK506 treatments were measured in vitro using the Jurkat human T-cell line. 

In addition to their extensive usage as an in vitro human T cell model, Jurkat cells were 

selected based upon their expression of TCRBV8 19, a TCR that showed varied 

responses to CSA and FK506 in our experiments. The experiments were designed to 

determine the potential mechanistic difference that could be responsible for the differing 

TCRBV expression pattern observed in vivo.  
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MATERIALS AND METHODS 
 
Human Subjects 
 

Study subjects (n=5) were patients who underwent allogeneic peripheral blood 

stem cell transplants at West Virginia University’s Mary Babb Randolph Cancer Center, 

Morgantown, West Virginia. Informed consent was obtained from participants after the 

nature and possible consequences of the study had been fully explained according to 

West Virginia University’s Internal Review Board guidelines. A volume of ~20 mL 

peripheral blood was collected weekly through day 100 post transplant, via venipuncture 

from hematopoietic stem cell transplant patients, into an acid citrate dextrose 

VACUTAINER™ blood collection tube (Becton Dickinson, Franklin Lakes, NJ, USA). 

Buffy coat layers were isolated via centrifugation at 3300 rcf for 10 minutes. 

Contaminating red blood cells were removed by hypotonic lysis. 
 

Cell Lines 
 

In vitro experiments were performed using the Jurkat human T-cell line (clone 

E6-1) (American Type Culture Collection, Rockville, MD). Cells were cultured at a 

density of 4x105 cells/mL in RPMI-1640 (HyClone, Logan, UT) supplemented with 10% 

heat-inactivated fetal calf serum (FCS) (Hyclone), 2 mM L-glutamine (BioWhittaker, 

Walkersville, MD), penicillin (100U/mL) (BioWhittaker), streptomycin (100ug/mL) 

(BioWhittaker), and 2-mercaptoethanol (0.049 mM) (Sigma Chemical Co., St. Louis, 

MO), and 50 mM Hepes (BioWhittaker). 
 

Treatments 
 

For human studies, patients were treated with CSA and/or FK506 according to 

established treatment protocols at the West Virginia University Mary Babb Randolph 

Cancer Center’s Blood and Marrow Transplant Program. CSA therapy is classically 

utilized when the recipient has a matched related donor (MRD) and FK506 therapy is 

instituted when the recipient has a matched unrelated donor (MUD) or is unresponsive 

post-transplant to CSA therapy. CSA and/or FK506 treatment started one day before 

transplant (d-1) and continued throughout the study period. Patients were monitored bi-

weekly for CSA and FK506 serum concentrations. Patient dosages were adjusted, as 
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necessary, to be within the preferred protocol serum concentrations of 200+/-20 ng/mL 

for CSA and 7-12 ng/mL for FK506. 

For in vitro cell culture studies, CSA (Bedford Laboratories, Bedford, OH) and 

FK506 (Fujisawa Healthcare, Inc., Deerfield, IL) were diluted in prepared media 

(previously described) to obtain 1/2x , 1x, and 2x of the target therapeutic dose. This 

resulted in the following concentrations: for CSA, 100ng/mL, 200ng/mL, and 400ng/mL; 

for FK506, 5ng/mL, 10ng/mL, and 20ng/mL. Cells were pretreated +/- CSA or FK506 for 

30 minutes at 37oC followed by addition of the stimulating agents phorbol 12-myristate 

acetate (PMA) (Sigma Chemical Co.) and A23187 calcium ionophore (Sigma Chemical 

Co.) at 10ng/mL and 1 ug/mL, respectively. 

 

RNA Isolation 
 

Total RNA was isolated from 20-40 x 106 white blood cells using TRIzol® Reagent 

according to the manufacturer’s directions (Ambion, Austin, TX, USA). RNA was 

dissolved in ultra-PURE™ Distilled DNAse and RNAse free water (Invitrogen 

Corporation, Carlsbad, CA, USA). DNase treatment was performed on isolated RNA 

according to the manufacturer’s recommendations using DNA-free™ (Ambion). RNA 

purity and concentration was determined by standard 260nm:280nm spectrophotometric 

analysis using a Genesis 10UV Spectronic Unicam (Spectronic Instruments, Rochester, 

NY, USA).  
 

RT-PCR 
 

One Step RT-PCR was performed using the QuantiTect™ Probe RT-PCR kit 

(Qiagen, Valencia, CA, USA). Recommended reaction mixtures were scaled down to a 

total reaction volume of 20 µL using 0.04 µg RNA with the following primer and probe 

concentrations: 0.4 µM TCRBV primer (Biosource International, Camarillo, CA, USA), 

0.4 µM TCRBC primer (Biosource International), and 0.2 µM TCRBC TaqMan® probe, 5’ 

6-FAM, 3’ BHQ™-1 (Integrated DNA Technologies, Inc., Coralville, IA, USA). The 

method, including primer and probe sequences, was as previously described (Brewer 

and Ericson, J. Immunol. Method, in press). In brief, 18SrRNA standardization reactions 

were performed in parallel using 0.4 µM each of sense and anti-sense primers 

88 



www.manaraa.com

(Biosource International) and 0.2 µM 18S rRNA  TaqMan® probe, 5’ 6-FAM, 3’ BHQ™-

1 (Integrated DNA Technologies, Inc.). An iCycler™ (BioRad Laboratories, Hercules, 

CA, USA) was used for the RT and amplification cycles. RT was performed at 50oC for 

60 minutes, max ramp speed, followed by an initial Taq activation step of 15 minutes at 

95oC, max ramp speed. A TouchDown PCR approach 20 was used with the following 

cycling conditions: denaturation for 15 seconds at 95oC, max ramp speed, annealing for 

30 seconds starting at 70oC decreasing by 2oC for 10 repeats, max ramp speed, and 

extension for 40 seconds at 72oC, min ramp speed. After this TouchDown of the 

annealing temperature, 50 cycles were performed as follows with the optical data 

collection occurring at the extension step: 15 seconds at 95oC (max ramp speed), 30 

seconds at 52oC (max ramp speed), and 40 seconds at 60oC (min ramp speed). 

Reactions were held at 4oC upon the conclusion of the run. Cycle threshold (Ct) values, 

or the cycle at which fluorescent amplification readings exceed background level, were 

determined using iCycler™ iQ Optical System Software Version 3.0a (BioRad 

Laboratories, Hercules, CA, USA). The primer sets utilized in this study have been 

previously shown to yield Ct values that are directly proportional to the amount of 

template present in the initial reactions (Brewer and Ericson, J. Immunol. Method, in 

press). 
 

Viability assay 
 

3x106 Jurkat cells (at a density of 4x105 cells/mL) were plated per treatment 

condition. At time points 24 hours, 36 hours, and 48 hours, 1x106 cells were removed 

from the culture. Viability was determined by trypan blue exclusion (Gibco Laboratories, 

Grand Island, NY) and 7-AAD incorporation (BD Pharmingen, San Diego, CA). 7-AAD 

incorporation was performed according to the manufacturer’s instructions. Stained cells 

were resuspended in 200 µL 1% paraformaldehyde solution. 30,000 total events were 

collected per sample using a Becton Dickinson FACSCalibur™ that was calibrated using 

Calibrite Beads™ and FACSCOMP™ software (Becton Dickinson, Franklin Lakes, NJ). 

Acquisition of data was performed using CellQuest™ Pro software (Becton Dickinson). 

Data was analyzed using Windows Multiple Document Interface (WinMDI) version 2.8 
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(Joseph Trotter, The Scripps Research Institute, http://facs.scripps.edu/software.html 

[14 December 2001]).  
 

Cell proliferation assay 
 

Cell proliferation was monitored by labeling cells prior to culture using the 

Molecular Probes Vybrant™ CFDA SE Cell Tracer Kit (Molecular Probes, Inc., Eugene, 

OR) according to manufacturer’s instructions. 3x106 CFSE labeled Jurkat cells (at a 

density of 4x105 cells/mL) were plated per treatment condition. At time points, 24 hours, 

36 hours, and 48 hours, 1x106 cells were removed from the culture, spun down and 

washed in 1x PBS prior to being resuspend in 200uL 1% paraformaldehyde. Cells were 

analyzed using a Becton Dickinson FACSCalibur™ that was calibrated using Calibrite 

Beads™ and FACSCOMP™ software (Becton Dickinson). Acquisition of data was 

performed using CellQuest™ Pro software (Becton Dickinson). Results were analyzed 

using ModFit LT™ software (Verity Software House, Topsham, ME). A total of 30,000 

events were collected and analyzed per sample.  
 

IL-2 production 
 

3x106 Jurkat cells (at a density of 4x105 cells/mL) were plated per treatment 

condition. At time points, 24 hours, 36 hours, and 48 hours, 1x106 cells were removed 

from the culture and spun down. Supernatant was harvested and used to determine IL-2 

production using the BD OptEIA™ Human IL-2 ELISA Kit II (BD Biosciences, San Diego, 

CA) according to manufacturer’s instructions. Colorimetric reactions were read on a 

Labsystems Multiskan MCC/340 microplate reader (Molecular Devices Corporation, 

Sunnyvale, CA) and data was analyzed using the Genesis Lite Version 3.0 software 

(Life Sciences International Ltd., Basingstoke, UK). 

 

Calcineurin Activity 
 

The Calcineurin Cellular Activity Assay Kit (Calbiochem, San Diego, CA) was 

used to determine the activity of calcineurin under various treatment condition. 4.5x106 

Jurkat cells (at a density of 4x105 cells/mL) were pretreated with doses of CSA or 
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FK506 for 30 minutes at 37oC followed by stimulation with PMA and A23187 (as 

described above) for 0 minutes, 5 minutes, 10 minutes, 20 minutes, or 30 minutes. Cells 

were harvested, washed, and lysed according to kit instructions. The harvested “high 

speed supernatant” was desalted using Econo-Pac® 10DG Columns (Bio-Rad 

Laboratories). Trace contaminating salts were determined to be absent from the 

desalted samples using the GREEN™ reagent as described in the assay kit. Desalted 

“high speed supernatants” were assayed for calcineurin phosphatase activity as 

described by the manufacturer’s instructions.  Colorimetric reactions were read on a 

Labsystems Multiskan MCC/340 microplate reader (Molecular Devices Corporation) and 

data was analyzed using the Genesis Lite Version 3.0 software (Life Sciences 

International Ltd.). 
 

Statistical Analyses 
 

For TCRBV alterations in response to CSA and FK506, bivariate fit statistical 

analysis was employed. One-way analysis of variance with Tukey’s post-hoc test was 

performed for all other statistical analyses.  
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RESULTS 
 
Cyclosporin A and FK506 differentially impact T cells bearing specific T cell 
receptors. 
 

In order to assess any alterations in the T cell receptor beta variable (TCRBV) 

repertoire associated with the administration of cyclosporin A (CSA) or  

Table 1: In vivo TCRBV expression changes in response to increases in FK506 and CSA 

dosages. 

Opposite trends were observed for the changes in TCRBV repertoire expression in response to 
the immunosuppressive agents FK506 and CSA. Results shown are derived from analysis of 5 
patients, 11-14 time points/patient totaling 70 separate observations, each performed in triplicate. 
Reported p-values are indicative of statistical significance with a confidence interval of at least 
95%, or p<0.05.  

 

tacrolimus (FK506), human T cells were isolated from allogeneic peripheral 

(hematopoietic) stem cell transplant patients weekly up to 100 days post transplant. We 

hypothesized that both CSA and FK506 would have a “global” immunosuppressive 
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effect on the T cells within the hematopoietic stem cell recipients. Analysis of the 

TCRBV repertoire, however, demonstrated polarized responses of T cells to these two 

agents (Table 1). When TCRBV expression was analyzed in response to FK506, a 

predominant suppression was observed in its effects on T cells bearing specific 

receptors, specifically TCRBV1-6, 11-16, and 20-23. However, when samples were 

analyzed for the effect induced by CSA, an increase in the expression of TCRBV4-6, 

11-13, 15, 16, and 21 was observed. The in vivo concentration of CSA and FK506 can 

be impacted by various factors. Calcium channel blockers, anti-fungal agents, 

antibiotics, and anti-inflammatory drugs are among the agents known to potentially 

increase the serum concentrations of CSA and FK506 (according to manufacturer). 

Anticonvulsants, grapefruit, and dietary supplements, such as St. John’s Wort, may 

have the opposite effect and decrease serum concentrations of CSA and FK506 

(according to manufacturer). To ensure that such metabolic alterations were not causing 

artificial changes in the expression of the TCRBV repertoire, serum concentrations of 

CSA and FK506 were also analyzed for their impact on the TCRBV expression levels. 

The analyses using either the actual dosage level (Table 1) or the serum level (data not 

shown) yielded similar results.   
 

Cyclosporin A and FK506 affect on cell viability. 
 

It is possible that the different TCRBV usage between CSA and FK506 in vivo 

was due to a differential effect of the two agents on T cell viability. In order to assess 

this potential difference in viability in vitro studies 

were performed using the T–cell derived Jurkat 

cell line. Jurkat cells were pretreated with a range 

of concentrations of CSA (0-400ng/mL) or FK506 

(0-20ng/mL) prior to stimulation with PMA and 

A23187 and then cultured for 24 hr, 36 hr, or 48 

hr at which time 7-AAD staining was done to 

access viability. As depicted in Figure 2, 

significant differences were not obtained in cell 

viability, despite the presence of CSA or FK506.  

Figure 2: Effects of CSA and FK506 on 

Jurkat cell viability as measured by 7-AAD 

exclusion. 

Results depicted are the means of two independent experiments. Abbreviations: no Rx, no 
addition of immunosuppressive agent; CSA, plus the addition of cyclosporin A; FK506, plus the 
addition of FK506. Experiments depicted are for target therapeutic doses of CSA (200ng/mL) and 
FK506 (10ng/mL). 
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Similar results were seen when cells were pretreated with any of the following 

concentrations of immune suppressive agents: one-half therapeutic dose (CSA: 

100ng/mL, FK506: 5 ng/mL), therapeutic dose (CSA: 200 ng/mL, FK506: 10 ng/mL), or 

twice the therapeutic dose (CSA: 400 ng/mL, FK506: 20 ng/mL), or when viability was 

assessed after 24 hours or 48 hours of culture. At 24 hr, 36 hr, and 48 hr, a trend of 

higher cell death was observed with the pretreatment of both the therapeutic and twice 

the therapeutic doses of CSA compared to FK506. These difference, however, were not 

found to be statistically significant. Similar results were also observed when viability was 

assessed by trypan blue exclusion. 
 

Treatment with Cyclosporin A and FK506 do not alter the proliferation of Jurkat 
cells. 
 

With viability not noticeably altered by treatment with either CSA or FK506, the 

proliferative ability of the treated cells was examined next.  

Figure 3: Effects of CSA and FK506 on Jurkat cell proliferation as determined by CFSE cellular 
membrane labeling. 

The proliferative index, or the sum of the cells in all generations divided by the computed number of 
original parent cells present at the start of the experiment, was determined for all samples from two 
independent experiments with their means +/- SEM indicated. The proliferative index is a measure 
of the increase in cell number in the culture over the experimental period. No statistically significant 
differences were observed for proliferation experiments. Abbreviations: no Rx, no addition of 
immunosuppressive agent; CSA, plus the addition of cyclosporin A; FK506, plus the addition of 
FK506. Experiments depicted are for target therapeutic doses of CSA (200ng/mL) and FK506 
(10ng/mL). 
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The proliferative index is a calculated measurement of the increase observed in 

the culture’s cell number over the course of the experiment. As depicted in Figure 3, no 

statistically significant difference in cellular proliferation was observed when cells were 

treated with either CSA or FK506. Additionally, no statistically significant differences 

were detected when the cells were treated with a range of concentrations of CSA or 

FK506 (one-half therapeutic dose, therapeutic dose, or twice the therapeutic dose) or 

when cells were permitted to proliferate for 24, 36, or 48 hours. 
 

Cyclosporin A and FK506 inhibit IL-2 production in Jurkat cells. 
 

CSA and FK506 are known to inhibit IL-2 production by T cells 13-16. While high 

IL-2 levels were produced by untreated 

(without the addition of CSA or FK506) 

stimulated Jurkat cells, significant 

differences were observed between the 

levels of IL-2 produced by treated and 

untreated samples, regardless of the 

concentration of the agents used (one-

half therapeutic dose, therapeutic dose 

(Figure 4), or twice the therapeutic dose) 

or the length of the culture period (24, 36, 

or 48 hours). In addition, there was no 

statistically significant difference found in 

the suppression of IL-2 production 

between CSA and FK506 treatments. 

Both agents were found to inhibit IL-2 

production equally and were determined 

to not interfere with the in vitro IL-2 

detection assay. 

Figure 4: Effects of CSA and FK506 on IL-2 secretion 

by Jurkat cells as measured by ELISA. 

Data is representative of the means of two 
independent experiments +/- SEM. Statistical 
significances are noted.  Dotted lines indicate assay 
limit of detection. Abbreviations: no Rx, no addition of 
immunosuppressive agent; CSA, plus the addition of 
cyclosporin A; FK506, plus the addition of FK506. 
Experiments depicted are for target therapeutic 
doses of CSA (200ng/mL) and FK506 (10ng/mL). 
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Calcineurin activity is inhibited equally by both CSA and FK506. 
 

The inhibition of IL-2 production by 

both CSA and FK506 is known to occur by 

the binding of these agents to their binding 

partners cyclophilin and FK-binding 

protein, respectively, and their subsequent 

inhibition of calcineurin 7-12. Therefore, the 

activity of calcineurin in Jurkat cells treated 

with CSA or FK506 was measured in vitro. 

Jurkat cells were treated with the 

therapeutic doses of CSA and FK506 and 

stimulated with PMA and A23187 calcium 

ionophore for 5, 10, 20, or 30 minutes prior 

to cellular protein collection. As 

anticipated, cells treated with either CSA or 

FK506 resulted in a significant decrease in 

the activity of calcineurin compared to 

untreated control cells (Figure 5). 

Significant differences, however, were only observed at the five-minute time point and 

no significant difference was ever observed between CSA and FK506. Additionally, it 

was determined that neither agent interfered with the detection of the in vitro calcineurin 

activity assay. 

Figure 5: Effects of CSA and FK506 on calcineurin
activity in Jurkat cells. 

Data is representative of the means of two 
independent experiments +/- SEM. Statistical 
significances are noted.  Dotted lines indicate 
assay limit of detection. Abbreviations: no Rx, no 
addition of immunosuppressive agent; CSA, plus 
the addition of cyclosporin A; FK506, plus the 
addition of FK506. Experiments depicted are for 
target therapeutic doses of CSA (200ng/mL) and 
FK506 (10ng/mL). 
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DISCUSSION 
 

Despite the fact that both CSA and FK506 inhibit IL-2 production by T cells, 

different effects were observed on the T cell receptor repertoire in the presence of these 

immunosuppressive agents in peripheral blood samples from patients undergoing 

allogeneic peripheral blood stem cell transplant. This observation, however, cannot be 

attributed to differences in the viability, proliferation, IL-2 production, or calcineurin 

activity of Jurkat cells treated with CSA versus FK506 in vitro.  

Since the in vivo setting is rather complex in experimental variables, we chose to 

perform in vitro experiments using the Jurkat human T-cell line. T helper cells have 

been documented to be the main target of CSA and FK506 (according to 

manufacturers), and this was an additional reason for using Jurkat cells (CD4+) in in 

vitro experiments. An additional advantage to using this cell line is that Jurkat cells 

express TCRBV8 19, a TCR that showed varied responses to CSA compared to FK506 

(Table 1). A decrease in TCRBV8 was seen with CSA whereas no significant response 

was observed with FK506 treatment.   

Two previous reports detailed the changes in the expression of TCRBV8 in 

response to CSA therapy. Fischer et al., described an increase in TCRBV8.5 in mice 

following administration of CSA therapy 21 and Severino et al., reported an increase in 

the expression of TCRBV8 in CSA-induced murine syngeneic graft-versus-host disease 
22. Although it has been determined that great homology exists between the TCRBV 

families in mice and humans 23, there is no report of TCRBV8.5 in humans 24, making 

these specific murine studies difficult to directly compare to our study. They do, 

however, suggest that CSA can exert differed effects on cells carrying a specific 

TCRBV. 

While the inhibition of IL-2 production through the blocking of calcineurin is the 

accepted mechanism of action for both CSA and FK506 13-16, a report by Marton et al., 

in yeast cells has alluded to the possible existence of a calcineurin-independent 

pathway for FK506-mediated effects 25. Using a yeast model and various mutants, they 

demonstrated that many of the GCN-4 regulated genes were induced by exposure to 

FK506. GCN-4, a c-Jun/c-Fos homolog, is a eukaryotic transcriptional activator protein 

that is primarily responsible for the regulation of biosynthetic genes in Saccharomyces 

97 



www.manaraa.com

cerevisiae 26-29. Although different model systems, both humans and yeast are 

eukaryotic and a crossover in this alternative pathway may exist. There is also evidence 

that there is different transcriptional control in humans depending upon the TCRBV 

usage, with factors such as the promoter and non-coding (spacer) regions contributing 

to these differences 30-35.  

Our results argue that a secondary mechanism of action for the altered TCRBV 

repertoire must exist for these immunosuppressive agents as none of the above 

mentioned parameters, including calcineurin activity, IL-2 production, cell viability and 

proliferation, exhibited differing effects in response to CSA and FK506 treatments. While 

the possibility still exists due to our small sample size, we do not believe that these 

results are attributed to donor variability as results reported were observed across the 

population of patient/donor pairs, not unique to any single case. Future investigation into 

alternative mechanisms may yield a clearer understanding of the cellular events 

responsible for the varying effect on T cells by the related immunosuppressive agents 

CSA and FK506. 
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CHAPTER 6 
 

 

 

GENERAL CONCLUSIONS AND DISCUSSION 
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The overall goal of this investigation was to identify and study the role of specific 

T lymphocytes following human hematopoietic stem cell (HSC) transplant. Current 

literature has stressed the importance of T lymphocytes in this setting but has thus far 

focused on the identification of specific families of T lymphocytes as it pertains to the 

occurrence of graft-versus-host disease (GVHD). Several novel findings have emerged 

from our investigation: (1) a panel of oligonucleotides has been developed to accurately 

and efficiently detect expression of all known human TCRBV regions, (2) specific 

TCRBV families are associated with reactivation of cytomegalovirus (CMV) post HSC 

transplant with many of these same TCRBV families also being associated with the 

occurrence of GVHD, (3) the TCRBV repertoire engrafts in the recipient with a profile 

more similar to that found in the donor as opposed to that found in the recipient prior to 

transplant, and (4) the similar immunosuppressive agents, cyclosporin A (CSA) and 

tacrolimus (FK506), differentially alter the TCRBV repertoire with their administration.   

Prior investigations have used the TCRBV regions to identify specific T cells 

involved in various settings, such as with GVHD. While our study had initially planned 

on utilizing prior existing technology to further investigate the role of T lymphocytes in 

the post HSC transplant environment, we were unable to locate a method that 

accurately examined all of the TCRBV genes. To address this, we relied on the TCR 

gene classification system instituted by the World Health Organization. Using various 

sequence databases and strict primer sequence specifications, we were able to develop 

a panel of primers that could be used to accurately and efficiently identify all 91 alleles 

of the human TCRBV region. Using these primers and sequence specific (TaqMan® 

probe) real-time PCR detection, we demonstrated that our system was not only specific 

but also efficient and comparable to TCRBV protein expression profiles. The importance 

of this technology was realized and has since been protected by both U.S. and foreign 

patent applications.  
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Once a method was available to accurately identify T cells based upon their 

TCRBV expression, we wanted to apply this technology to our specific area of interest, 

the post HSC transplant setting. Many prior investigations using human HSC transplant 

patients have focused on identifying the T cells associated with GVHD. These studies 

relied on “snapshot” sampling, for example collecting a sample early post transplant and 

at the time of GVHD diagnosis. Many of these studies also aimed to determine if there 

was an association of specific T cells in the peripheral blood (PB) and in the GVHD 

tissue lesion, the lesion frequently being a skin biopsy. In these studies, though, such 

an association was rarely seen. We believed one explanation for the lack of association 

of PB and GVHD lesion TCR repertoires was due to the fact that PB and tissue samples 

were drawn simultaneously. This timing of sample procurement would not accounting 

for the fact that (1) the development of GVHD is not an instantaneous process and, (2) 

the T cells expanded in the PB would traffic to the lesion after expansion, resulting in an 

efflux of these cells from the PB and an influx of these cells into the lesion. In our study, 

we instituted a serial sampling schedule where baseline samples were collected from 

both the donor and recipient prior to transplant, with recipient sample collection 

continuing on a weekly basis post HSC transplant, up to day 100. Day 100 was chosen 

as our final time point since acute GVHD, by definition, occurs no later than day 100 

post transplant. The chronic form of the disease may not appear for several months to 

years after transplant, yielding a sampling schedule not conducive to our time frame. 

While our initial plans of obtaining a GVHD lesion sample at time of diagnosis was not 

fulfilled, we were able to collect PB samples from our study patients on a regular basis. 

This led us to analyze not only what TCRBV families were involved in GVHD but also 

those families involved in other post HSC transplant events. 
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Our HSC transplant center here at West Virginia University has frequently 

observed the association of CMV reactivation post transplant and the subsequent 

development of GVHD. Although there are several studies that support the notion that a 

link does indeed exist between CMV and GVHD, no such study has looked at the 

similarity in TCRBV expression with these two complications post HSC transplant. We 

not only determined which TCRBV families were associated with CMV reactivation in 

this setting, but were also able to draw parallels between many of these TCRBV families 

and those also associated with GVHD. Further, many of the families we determined to 

be associated with CMV reactivation have been previously shown to be CMV reactive in 

what are considered otherwise healthy human donors. Not only is our study the first to 

identify those TCRBV families associated with CMV reactivation post HSC transplant, 

we were also the first to show an overlap in the TCRBV families associated with CMV 

and GVHD. 

Since we had serial TCRBV analysis of our patients, we utilized our data sets to 

determine if the transplanted donor HSCs developed with a phenotype more 

reminiscent of that found in the recipient prior to transplant or with greater similarity to 

the mature profile found in the donor. We expected that the influence of the recipient’s 

environment on these developing HSC would consequently lead to the development of 

a TCRBV repertoire more reminiscent of that found in the recipient prior to transplant. 

However, our samples exhibited an engraftment profile with a greater correlation to that 

found in the donor prior to transplant compared to that initially found in the recipient. 

While we had a small sample population (n=4) these are the first results we can find to 

investigate this question. Furthermore, we do not believe these results are attributable 

to analysis of mature donor T cells initially found within the graft as the patients that 

exhibited this trend all received Campath-1H therapy that specifically targets the 

destruction of any residual mature donor T cells found within the graft. The one patient 

that exhibited a greater correlation to herself than to that found in the donor at the 

conclusion of the study was the sole patient in our population that did not receive the 

Campath-1H regimen, but received an alternate myeloblative regimen. These results 

are preliminary but do inspire further thoughts into the contribution of the recipient 

environment on the development of the transplanted donor cells. 
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As a consequence of serial time point analysis and the treatment of all of our 

study participants with immunosuppressive agents, we observed that the highly similar 

immunosuppressive agents CSA and FK506, which are both calcineurin inhibitors, had 

polarized effects on the TCRBV repertoire. FK506 administration resulted in an overall 

suppression of TCRBV expression while the opposite effect was observed with CSA 

therapy. Interesting to this observation is the fact that in the HSC transplant setting, 

FK506 administration is customarily reserved for situations in which greater genetic 

disparity exists between the recipient and donor, with CSA administration typically being 

utilized for those transplants with fewer mismatch-related complications anticipated. 

Potentially our observation could help to explain the immunology behind such 

pharmacological strategies. To try to determine if there was some facet of the known 

immunosuppression mechanism of these two agents responsible for contributing to our 

observed difference, we examined the effect of these two agents in vitro using the 

human Jurkat T cell line. We determined that while both of these agents did decrease 

the activity of calcineurin and, subsequently inhibited the production of IL-2, they did so 

equally well. 

Taken together, we feel we have contributed to the understanding of the role of 

specific T cells in the post HSC transplant environment. While our sample population 

was large compared to prior similar investigations, we hope that future studies will 

confirm our results using larger sample populations. Not only has our work contributed 

to the field of HSC transplantation but also to the field of immunology as a whole. Our 

TCRBV expression technology vastly improves upon that which existed in the field prior 

to our entry, and we anticipate the application of our technology to many areas of 

immunological interest, including the usage of specific TCRBV families during infectious 

disease, autoimmune disease, graft rejection, and even cancer therapy and graft-

versus-leukemia effect. Future work will hopefully elucidate a greater understanding of 

the association of CMV reactivation and GVHD with the identification of specific 

antigens driving these T cell responses. The possible existence of a secondary 

mechanism of action for CSA and FK506 will also be investigated in the future and will 

help to encourage a re-thinking of present treatment strategies. Should all patients not 
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be given FK506 as opposed to the present directing of patients into treatment groups 

based upon the relation of the donor?   

In conclusion, one of the most interesting facets of this project was the identity it 

took over time. As data was generated and the novelties of patient sampling became 

more apparent, areas that were initially anticipated to be of less interest became 

increasingly curious and of interest. It reasons that one of the facets to being a good 

scientist is to set aside pre-conceived notions and approach the data with neutrality. By 

these means truths are discovered and the field of science marches onward. After all, 

“the true scientist never loses the faculty of amazement”.  
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Amplification efficiency analysis 

 

Amplification efficiency analysis for TCRBV primers was determined using the following 

formula: 

 

Efficiency (E) = (10-1/slope)-1 

Where the slope is determined by plotting the Ct value (Y-axis) vs log [cDNA] (X-axis) 

using 10-fold dilutions of template  

 

Example of equation usage: 

slope of amplification plot is determined to be -3.59 

E = (10-1/-3.59)-1 

E=10 0.28-1 

E=1.90-1 

E=0.90, or 90% efficient 

 

Reference: Rasmussen, R. (2001) Quantification on the LightCycler. In Meuer, S., 

Wittwer, C. and Nakagawara, K. (eds), Rapid Cycle Real-time PCR, Methods and 

Applications. Springer Press, Heidelberg, pp. 21-34. 
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IOTest™ Beta Mark TCR VB Repertoire Kit 
 

The IOTest™ Beta Mark TCR VB Repertoire Kit (Beckman Coulter, Inc., 

Fullerton, CA) was used for TCRBV protein expression analysis. Samples were 

prepared according to the manufacturer’s directions using 5 x 105 buffy coat white blood 

cells per sample, prepared as previously described. To identify CD3+ cells for TCR 

analysis an anti-CD3 PC5 antibody and an IgG1 PC5 isotype antibody, each at a 

volume of 10µl/sample (Beckman Coulter, Inc.) were used as described in the IOTest™ 

kit specifications. Stained samples were then washed in 1X PBS prior to fixation in 500 

µl of 1% paraformaldehyde. All prepared samples were analyzed by flow cytometric 

analysis using a FACScan (Becton Dickinson, Franklin Lakes, NJ), which had been 

calibrated using three color Calibrite Beads (Becton Dickinson) and FACSCOMP 

software (Becton Dickinson). A total of 5,000 live-gated CD3+ cells were collected for 

analysis of each IOTest™ TCR BV expression sample. SSC and FSC data were 

acquired in the linear mode and the FL1, FL2, and FL3 parameters were collected 

logarithmically. Data analysis was performed using Windows Multiple Document 

Interface (WinMDI) version 2.8 (Joseph Trotter, The Scripps Research Institute, 

http://facs.scripps.edu/spftware.html).  

 

 
 

 

Gating of CD3+ lymphocytes for IOTest TCRVB antibody analysis.  
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IOTest TCRVB antibody flow cytometric results expressed as percent CD3+ cells. 
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Laboratory Technique Experience
 
RNA, DNA, and protein isolation 
gel electrophoresis and SDS-PAGE      
Southern Blotting 
Western Blotting 
Flow cytometry and FACS analysis 
PCR, RT-PCR, Realtime PCR 
DNA sequencing 
Primer and Taqman probe design 
Genomic analysis 
ELISA 
Cell separation: columns, density, and magnetic separation 
CsCl gradient ultracentrifugation 
radioactive isotype labeling 
chromium release assay  
dissection and organ harvesting 
intraperitonial injections 
sterile cell culture 
bacterial culture, including selective and differential media culturing 
viral culture 
HPLC        
NMR 
Gas Chromatography 
spectroscopy   
Infrared Analysis (IR)      
Ultraviolet Analysis (UV)       
Atomic Absorption (AA)  
titrimetric analysis  
potentiometric analysis         
DNA Methylation      
cloning 
recombination and transformation procedures  
restriction mapping 
genomic library construction 
DNA sequencing 
TUNEL   
caspase assays 
annexin analysis 
cell proliferation analysis (CFSE tracking) 
confocal microscopy 
electron microscopy 
transwell assays 
venipuncture techniques and peripheral blood cell isolation 
P3 laboratory experience 
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